DOI QR코드

DOI QR Code

Regional Low Flow Frequency Analysis Using Bayesian Multiple Regression

Bayesian 다중회귀분석을 이용한 저수량(Low flow) 지역 빈도분석

  • Kim, Sang-Ug (Seoul National University BK21 SIR Group, Seoul National University) ;
  • Lee, Kil-Seong (Dept. of Civil and Environmental Engineering, Seoul National University)
  • 김상욱 (서울대학교 BK21 안전하고 지속가능한 사회기반건설 사업단) ;
  • 이길성 (서울대학교 공과대학 건설.환경공학부)
  • Published : 2008.03.15

Abstract

This study employs Bayesian multiple regression analysis using the ordinary least squares method for regional low flow frequency analysis. The parameter estimates using the Bayesian multiple regression analysis were compared to conventional analysis using the t-distribution. In these comparisons, the mean values from the t-distribution and the Bayesian analysis at each return period are not significantly different. However, the difference between upper and lower limits is remarkably reduced using the Bayesian multiple regression. Therefore, from the point of view of uncertainty analysis, Bayesian multiple regression analysis is more attractive than the conventional method based on a t-distribution because the low flow sample size at the site of interest is typically insufficient to perform low flow frequency analysis. Also, we performed low flow prediction, including confidence interval, at two ungauged catchments in the Nakdong River basin using the developed Bayesian multiple regression model. The Bayesian prediction proves effective to infer the low flow characteristic at the ungauged catchment.

본 연구는 저수량 지역 빈도분석(regional low flow frequency analysis)을 수행하기 위하여 일반최소자승법(ordinary least squares method)을 이용한 Bayesian 다중회귀분석을 적용하였으며, 불확실성측면에서의 효과를 탐색하기 위하여 Bayesian 다중회귀분석에 의한 추정치와 t 분포를 이용하여 산정한 일반 다중회귀분석의 추정치의 신뢰구간을 비교분석하였다. 각 재현기간별 비교결과를 보면 t 분포를 이용하여 산정된 평균 추정치와 Bayesian 다중회귀분석에 의한 평균 추정치는 크게 다르지 않았다. 그러나 불확실성 측면에서 평가해볼 때 신뢰구간의 상한추정치와 하한추정치의 차이는 Bayesian 다중회귀분석을 사용한 경우가 기존 방법을 사용한 경우보다 훨씬 작은 것으로 나타났으며, 이로부터 저수량(low flow) 지역 빈도분석을 수행하는 경우 Bayesian 다중회귀분석이 일반 회귀분석보다 불확실성을 표현하는데 있어서 우수하다는 결과를 얻을 수 있었다. 또한 낙동강 유역에 2개의 미계측 유역을 선정하고 구축된 Bayesian 다중회귀모형을 적용하여 불확실성을 포함한 미계측 유역에서의 저수량(low flow)을 추정하였으며 이와 같은 방법이 미계측 유역에서의 저수(low flow) 특성을 나타내는 데 있어서 효과적일 수 있음을 입증하였다.

Keywords

References

  1. 건교부, 한국수자원공사 (2006). 유역조사 보고서(낙동강유역)
  2. 김상욱 (2007). Low flow frequency analysis using Bayesian approach. 박사학위논문, 서울대학교
  3. 김상욱 (2008). "Bayesian MCMC를 이용한 저수량 점빈도분석: II. 적용과 비교분석." 한국수자원학회논문집, 한국수자원학회, 제41권, 제1호, pp. 49-63 https://doi.org/10.3741/JKWRA.2008.41.1.049
  4. Ashkar, F. and Quarda, T.B.M.J. (1998). "Approximate confidence intervals for quantiles of gamma and generalized gamma distributions." Journal of Hydrologic Engineering, Vol. 3, No. 1, pp. 43-51 https://doi.org/10.1061/(ASCE)1084-0699(1998)3:1(43)
  5. Chatterjee, S. and Price, B. (1977). Regression Analysis by Example. John Wiley & Sons, N.Y
  6. Chowdhury, J.U., and Stedinger, J.R. (1991). "Confidence interval for design flood with estimated skew coefficient." Journal of Hydraulic Engineering, Vol. 117, No. 7, pp. 811-931 https://doi.org/10.1061/(ASCE)0733-9429(1991)117:7(811)
  7. Cohn, T.A., Lane, W.L., and Stedinger, J.R. (2001). "Confidence intervals for expected moments algorithm flood quantile estimates." Water Resources Research, Vol. 37, No. 6, pp. 1695-1706 https://doi.org/10.1029/2001WR900016
  8. Coles, S.G., and Powell, E.A. (1996). "Bayesian methods in extreme value modeling: A review and new developments." International Statistical Review, Vol. 64, No. 1, pp. 119-136 https://doi.org/10.2307/1403426
  9. Durrans, S.R. and Tomic, S. (1996). "Regionalization of low-flow frequency estimates: An Alabama case study." Water Resources Bulletin, Vol. 32, No. 1, pp. 23-37
  10. Gringorten, I.I. (1963). "A plotting rule for extreme probability paper." Journal of Geophysics Research, Vol. 68, No. 3, pp. 813-814 https://doi.org/10.1029/JZ068i003p00813
  11. Hosking, J.R.M, and Wallis, J.R. (1997). Regional Frequency Analysis. Cambridge University Press, New York
  12. Kaufman L., and Rousseeuw, P.J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, N.Y
  13. Kavetski, D., Kuczera, G., and Fanks, S.W. (2006). "Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory." Water Resources Research, Vol. 42, W03407 https://doi.org/10.1029/2005WR004368
  14. Kelly, K.S. and Krizysztofowicz, R. (1994). "Probability distributions for flood warning systems." Water Resources Research, Vol. 30, No. 4, pp. 1145-1152 https://doi.org/10.1029/93WR03452
  15. Kingston, G.B., Lambert, M.F., and Maier, H.R. (2005). "Bayesian training of artificial neural networks used for water resources modeling." Water Resources Research, Vol. 41, W12409 https://doi.org/10.1029/2005WR004152
  16. Krzysztofowicz, R. (1983a). "Why should forecaster and a decision maker use Bayes theorem." Water Resources Research, Vol. 19, No. 2, pp. 327-336 https://doi.org/10.1029/WR019i002p00327
  17. Krzysztofowicz, R. (1983b). "A Bayesian Markov model of the flood forecast process." Water Resources Research, Vol. 19, No. 6, pp. 1455-1465 https://doi.org/10.1029/WR019i006p01455
  18. Kuczera, G. (1999). "Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference." Water Resources Research, Vol. 35, No. 5, pp. 1551-1557 https://doi.org/10.1029/1999WR900012
  19. Kuczera, G., and Parent E. (1998). "Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm." Journal of Hydrology, Vol. 211, pp. 69-85 https://doi.org/10.1016/S0022-1694(98)00198-X
  20. Lee, K.S., and Kim, S.U. (2007). "Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method." Hydrological Processes, In press(on-line published) https://doi.org/10.1002/hyp.6778
  21. Madsen, H., and Rosbjerg, H.D. (1997). "Generalized least squares and empirical Bayes estimation in regional partial duration series index flood modeling." Water Resources Research, Vol. 33, No. 4, pp. 771-781 https://doi.org/10.1029/96WR03850
  22. Martz, H.F. and Waller, R.A. (1982). Bayesian Reliability Analysis. John Wiley & Sons, N.Y
  23. O'Connell, D.R.H., Ostenaa, D.A., Levish, D.R., Klinger, and R.E. (2002). "Bayesian flood frequency analysis with paleohydrologic bound data." Water Resources Research, Vol. 38, No. 5, pp. 1-14
  24. Reis Jr., D.S., and Stedinger, J.R. (2005). "Bayesian MCMC flood frequency analysis with historical information." Journal of Hydrology, Vol. 313, pp. 97-116 https://doi.org/10.1016/j.jhydrol.2005.02.028
  25. Reis Jr., D.S., Stedinger, J.R., and Martins, E.S. (2005). "Bayesian generalized least squares regression with application to log Pearson type III regional skew estimation." Water Resources Research, Vol. 41, W10419 https://doi.org/10.1029/2004WR003445
  26. Seidou, O., Ouarda, T.B.M.J., Barbet, M., Bruneau, P., and Bobee, B. (2006). "A parametric Bayesian combination of local and regional information in flood frequency analysis." Water Resources Research, Vol. 42, W11408 https://doi.org/10.1029/2005WR004397
  27. Sorensen, D. and Gianola, D. (2002). Likelihood, Bayesian, and MCMC methods in Quantitative Genetics. Springer-Verlag, New York
  28. Stedinger, J.R. (1983). "Confidence intervals for design events." Journal of Hydraulic Engineering, Vol. 109, No. 1, pp. 13-27 https://doi.org/10.1061/(ASCE)0733-9429(1983)109:1(13)
  29. Stedinger, J.R., Vogel, R.M., and Foufoula-Georgiou, E. (1993). "Frequency Analysis of Extreme Events." in Handbook of Hydrology, Maidment, D.(eds). McGraw-Hill, New York, Chapter 18
  30. Thiemann, M., Trosset, M., Gupta, H.V., and Sorooshian, S. (2001). "Bayesian recursive parameter estimation for hydrologic models." Water Resources Research, Vol. 37, No. 10, pp. 2521-2535 https://doi.org/10.1029/2000WR900405
  31. Vicens, G.J., Rodriguez-Iturbe, I., and Schaake Jr, J.C. (1975). "A Bayesian framework for the use of regional information in hydrology." Water Resources Research, Vol. 11, No. 3, pp. 405-414 https://doi.org/10.1029/WR011i003p00405
  32. Vrugt, J.A., Gupta, H.V., Bouten, W., and Sorooshian, S. (2003). "Shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters." Water Resources Research, Vol. 39, No. 8, SWC 1-16
  33. Wang, Q.J. (2001). "A Bayesian joint probability approach for flood record augmentation." Water Resources Research, Vol. 37, No. 6, pp. 1707-1712 https://doi.org/10.1029/2000WR900401
  34. Whitley, R.J. and Hromadka II, T.V. (1999). "Approximate confidence intervals for design floods for a single site using a neural network." Journal of Hydrology, Vol. 153, pp. 265-290 https://doi.org/10.1016/0022-1694(94)90195-3
  35. Wood, E.F., and Rodriguez-Iturbe, I. (1975a). "Bayesian inference and decision making for extreme hydrologic events." Water Resources Research, Vol. 11, No. 4, pp. 533-542 https://doi.org/10.1029/WR011i004p00533
  36. Wood, E.F., and Rodriguez-Iturbe, I. (1975b). A Bayesian approach to analyze uncertainty among flood frequency models. Water Resources Research, Vol. 11, No. 6, pp. 839-843 https://doi.org/10.1029/WR011i006p00839
  37. Zhang, B., and Govindaraju, R.S. (2000). "Prediction of watershed runoff using Bayesian concepts and modular neural networks." Water Resources Research, Vol. 3, pp. 753-762 https://doi.org/10.1029/1999WR900264

Cited by

  1. A Probabilistic Estimation of Changing Points of Seoul Rainfall Using BH Bayesian Analysis vol.43, pp.7, 2010, https://doi.org/10.3741/JKWRA.2010.43.7.645
  2. Analysis of Uncertainty of Rainfall Frequency Analysis Including Extreme Rainfall Events vol.43, pp.4, 2010, https://doi.org/10.3741/JKWRA.2010.43.4.337
  3. Prediction of Seasonal Nitrate Concentration in Springs on the Southern Slope of Jeju Island using Multiple Linear Regression of Geographic Spatial Data vol.44, pp.2, 2011, https://doi.org/10.9719/EEG.2011.44.2.135
  4. Improvement of Hydrologic Dam Risk Analysis Model Considering Uncertainty of Hydrologic Analysis Process vol.47, pp.10, 2014, https://doi.org/10.3741/JKWRA.2014.47.10.853
  5. Assessment of Typhoon Trajectories and Synoptic Pattern Based on Probabilistic Cluster Analysis for the Typhoons Affecting the Korean Peninsula vol.47, pp.4, 2014, https://doi.org/10.3741/JKWRA.2014.47.4.385
  6. A Development of Regional Frequency Model Based on Hierarchical Bayesian Model vol.46, pp.1, 2013, https://doi.org/10.3741/JKWRA.2013.46.1.13