DOI QR코드

DOI QR Code

CUSPAL DEFLECTION IN CLASS V CAVITIES RESTORED WITH COMPOSITE RESINS

5급 와동의 복합레진 수복 시 발생되는 교두굴곡에 관한 연구

  • Park, Jun-Gyu (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Lim, Bum-Soon (Department of Dental Biomaterials Science, School of Dentistry, Seoul National University) ;
  • Lee, In-Bog (Department of Conservative Dentistry, School of Dentistry, Seoul National University)
  • 박준규 (치과보존학교실, 서울대학교 치의학대학원) ;
  • 임범순 (치과생체재료과학교실, 서울대학교 치의학대학원) ;
  • 이인복 (치과보존학교실, 서울대학교 치의학대학원)
  • Published : 2008.03.31

Abstract

The purpose of this study was to evaluate the effect of the polymerization shrinkage and modulus of elasticity of composites on the cusp deflection of class V restoration in premolars. The sixteen extracted upper premolars were divided into 2 groups with similar size. The amounts of cuspal deflection were measured in Class V cavities restored with a flowable composite (Filtek flow) or a universal hybrid composite (Z-250). The bonded interfaces of the sectioned specimens were observed using a scanning electron microscopy (SEM). The polymerization shrinkage and modulus of elasticity of the composites were measured to find out the effect of physical properties of composite resins on the cuspal deflection. The results were as follows. 1. The amounts of cuspal deflection restored with Filtek flow or Z-250 were $2.18\;{\pm}\;0.92{\mu}m$ and $2.95\;{\pm}\;1.13\;{\mu}m$, respectively. Filtek flow showed less cuspal deflection but there was no statistically significant difference (p > 0.05). 2. The two specimens in each group showed gap at the inner portion of the cavity. 3. The polymerization shrinkages of Filtek flow and Z-250 were 4.41% and 2.23% respectively, and the flexural modulus of elasticity of cured Filtek flow (7.77 GPa) was much lower than that of Z-250 (17.43 GPa). 4. The cuspal deflection depends not only on the polymerization shrinkage but also on the modulus of elasticity of composites.

본 연구의 목적은 복합레진의 중합수축과 탄성계수가 5급 와동 수복시 교두굴곡에 미치는 영향을 평가하기 위함이다. 16개의 발치된 상악 소구치를 평균 크기가 비슷하게 2개의 group으로 분류하였다. 각각의 치아에 5급 와동을 형성하여 유동성 복합레진 (Filtek flow)과 전구치 수복용 hybrid복합레진 (Z-250)으로 각 group을 충전하였을 때 나타나는 교두굴곡을 측정하였으며 그 후 수복단면을 주사전자현미경 (SEM)으로 관찰하였다. 각 복합레진의 중합수축률과 탄성계수를 측정하여 교두굴곡에 미치는 영향을 고찰하였고 다음과 같은 결과를 얻었다. 1. Filtek flow와 Z-250으로 충전한 group에서 교두굴곡량은 각각 $2.18\;{\pm}\;0.92\;{\mu}m$$2.95\;{\pm}\;1.13\;{\mu}m$으로 나타나 Filtek flow의 평균 교두굴곡량이 더 작은 것으로 측정되었으나 통계적 유의성은 보이지 않았다 (p > 0.05). 2. 수복단면의 SEM 관찰 결과 두 group의 시편 중 각각 2개의 시편에서 와동 내면에 접착이 탈락된 미세간격이 관찰되었다. 3. Filtek flow의 탄성계수간은 7.77 GPa로 Z-250의 17.43 GPa에 비해 절반 이상 낮았으며 중합수축률은 4.41%로 Z-250의 2.23%에 비해 더 큰 것으로 나타났다. 4. 교두굴곡에는 복합레진의 중합수축률 뿐만 아니라 수축응력의 발현에 영향을 주는 탄성계수가 복합적으로 작용함을 알 수 있었다.

Keywords

References

  1. Watts DC, Cash AJ. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dent Mater 7(4):281-287, 1991 https://doi.org/10.1016/S0109-5641(05)80030-2
  2. Lee IB, Cho BH, Son HH, Um CM. A new method to measure the polymerization shrinkage kinetics of light cured composites. J Oral Rehabil 32(4):304-314, 2005 https://doi.org/10.1111/j.1365-2842.2004.01414.x
  3. Lee IB, Cho BH, Son HH, Um CM, Lim BS. The effect of consistency, specimen geometry and adhesion on the axial polymerization shrinkage measurement of light cured composites. Dent Mater 22(11):1071-1079, 2006 https://doi.org/10.1016/j.dental.2005.08.012
  4. Davidson CL, de Gee AJ, Feilzer AJ. The competition between the composite-dentin bond strength and the polymerization contraction stress. J Dent Res 63(12): 1396-1399, 1984 https://doi.org/10.1177/00220345840630121101
  5. Neiva IF, de andrada MA, Baratieri LN, Monteiro S, Ritter AV Jr. An in vitro study of the effect of restorative technique on marginal leakage in posterior composites. Oper Dent 23(6):282-289, 1998
  6. Holan G, Levin M, Bimstein E, Grajower R, Eidelman E. Clinical, radiographic, SEM evaluation and assessment of microleakage of class II composite restorations. Am J Dent 2(5):274-278, 1989
  7. Eick JD, Welch FH. Polymerization shrinkage of posterior composite resins and its possible influence on postoperative sensitivity. Quintessence Int 17(2):103-111, 1986
  8. Opdam NJ, Roeters FJ, Feilzer AJ, Verdonschot EH. Marginal integrity and postoperative sensitivity in Class 2 resin composite restorations in vivo. J Dent 26(7):555-562, 1998 https://doi.org/10.1016/S0300-5712(97)00042-0
  9. Pearson GJ, Hegarty SM. Cusp movement of molar teeth with composite filling materials in conventional and modified MOD cavities. Br Dent J 166(5):162- 165, 1989 https://doi.org/10.1038/sj.bdj.4806750
  10. Meredith N, Setchell DJ. In vitro measurement of cuspal strain and displacement in composite restored teeth. J Dent 25(3-4):331-337, 1997 https://doi.org/10.1016/S0300-5712(96)00047-4
  11. Segura A, Donly KJ. In vitro posterior composite polymerization recovery following hygroscopic expansion. J Oral Rehabil 20(5):495-499, 1993 https://doi.org/10.1111/j.1365-2842.1993.tb01636.x
  12. Rees JS, Jagger DC, Williams DR, Brown G, Duguid W. A reappraisal of the incremental packing technique for light cured composite resins. J Oral Rehabil 31(1):81-84, 2004 https://doi.org/10.1046/j.0305-182X.2003.01073.x
  13. Abbas G, Fleming GJ, Harrington E, Shortall AC, Burke FJ. Cuspal movement and microleakage in premolar teeth restored with a packable composite cured in bulk or in increments. J Dent 31(6):437-444, 2003 https://doi.org/10.1016/S0300-5712(02)00121-5
  14. Fleming GJ, Hall DP, Shortall AC, Burke FJ. Cuspal movement and microleakage in premolar teeth restored with posterior filling materials of varying reported volumetric shrinkage values. J Dent 33(2):139-146, 2005 https://doi.org/10.1016/j.jdent.2004.09.007
  15. Lee MR, Cho BH, Son HH, Um CM, Lee IB. Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dent Mater 23(3):288-295, 2007 https://doi.org/10.1016/j.dental.2006.01.025
  16. McCullock AJ, Smith BG. In vitro studies of cuspal movement produced by adhesive restorative materials. Br Dent J 161(11):405-409, 1986 https://doi.org/10.1038/sj.bdj.4805990
  17. Versluis A, Douglas WH, Cross M, Sakaguchi RL. Does an incremental filling technique reduce polymerization shrinkage stresses- J Dent Res 75(3):871-878, 1996 https://doi.org/10.1177/00220345960750030301
  18. Feilzer AJ, Dooren LH, de Gee AJ, Davidson CL. Influence of light intensity on polymerization shrinkage and integrity of restoration-cavity interface. Eur J Oral Sci 103(5):322-326, 1995 https://doi.org/10.1111/j.1600-0722.1995.tb00033.x
  19. Uno S, Asmussen E. Marginal adaptation of a restorative resin polymerized at reduced rate. Scand J Dent Res 99(5):440-444, 1991
  20. Alomari QD, Reinhardt JW, Boyer DB. Effect of liners on cusp deflection and gap formation in composite restorations. Oper Dent 26(4):406-411, 2001
  21. Davidson CL, de Gee AJ. Relaxation of polymerization contraction stresses by flow in dental composites. J Dent Res 63(2):146-148, 1984 https://doi.org/10.1177/00220345840630021001
  22. Brannstrom M. Communication between the oral cavity and the dental pulp associated with restorative treatment. Oper Dent 9(2):57-68, 1984
  23. Brannstrom M, Johnson G, Linden LA, Fluid flow and pain response in the dentin produced by hydrostatic pressure. Odontol Rev 20(1):15-30, 1969

Cited by

  1. Effect of instrument compliance on the polymerization shrinkage stress measurements of dental resin composites vol.34, pp.2, 2009, https://doi.org/10.5395/JKACD.2009.34.2.145
  2. A survey on the use of composite resin in Class II restoration in Korea vol.34, pp.2, 2009, https://doi.org/10.5395/JKACD.2009.34.2.087
  3. The change of the initial dynamic visco-elastic modulus of composite resins during light polymerization vol.34, pp.5, 2009, https://doi.org/10.5395/JKACD.2009.34.5.450
  4. Comparison of marginal microleakage between low and high flowable resins in class V cavity vol.34, pp.6, 2009, https://doi.org/10.5395/JKACD.2009.34.6.477