DOI QR코드

DOI QR Code

Vibration Control of MR Suspension System Considering Damping Force Hysteresis

댐핑력 히스테리시스를 고려한 MR 서스펜션의 진동제어

  • 성민상 (인하대학교 대학원 기계공학과) ;
  • 성금길 (인하대학교 대학원 기계공학과) ;
  • 한영민 (인하대학교 기계공학부) ;
  • 최승복 (인하대학교 기계공학부) ;
  • 이호근 (대덕대학 자동차학부)
  • Published : 2008.03.20

Abstract

This paper presents vibration control performances of a commercial magnetorheological(MR) suspension via new control strategy considering hysteresis of the field-dependent damping force of MR damper. A commercial MR damper which is applicable to high class passenger vehicle is adopted and its field-dependent damping force is experimentally evaluated. Preisach hysteresis model for the MR damper is identified using experimental first order descending(FOD) curves. Then, a feed-forward compensation strategy for the MR damper is formulated and integrated with a linear quadratic regulation(LQR) feedback controller for the suspension system. Control performances of the proposed control strategy for the MR suspension is experimentally evaluated with quarter vehicle test facility.

Keywords

References

  1. Sung, K. G., Han, Y. M., Lim, K. H. and Choi, S. B., 2007, 'Discrete-time Fuzzy Sliding Mode Control for a Vehicle Suspension System Featuring an Electrorheological Fluid Damper', Smart Materials and Structures, Vol. 16, No. 3, pp. 798-808 https://doi.org/10.1088/0964-1726/16/3/029
  2. Rajendran, Luo, A. C. J. and Rajendran, A., 2007, Periodic Motions and Stability in a Semi-active Suspenstions System with MR Damping, Journal of Vibration and Control, Vol. 13, No. 5, pp. 687-710 https://doi.org/10.1177/1077546307074280
  3. Choi, S. B., Lee, S. K. and Park, Y. P., 2001, 'A Hysteresis Model for the Field-dependent Damping Force of a Magnetorheological Damper', Journal of Sound and Vibration, Vol. 245, No. 2, pp. 375-383 https://doi.org/10.1006/jsvi.2000.3539
  4. Wang, E. R., Ma, X. Q., Rakheja, S. and Su, C. Y., 2002, 'Modeling Hysteretic Characteristics of MR-fluid Damper and Model Validation', Proceedings of the 41st IEEE Conference, Vol. 2, pp. 1675-1680
  5. Mittal, S. and Menq, C. H., 2000, 'Hysteresis Compensation in Electromagnetic Actuators Through Preisach Model Inversion', IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 4, pp. 394-409 https://doi.org/10.1109/3516.891051
  6. Shames, I. H. and Cozzarelli, F. A., 1992, Elastic and Inelastic Stress Analysis, Prentice Hall, Englewood Cliffs, New Jersey, pp. 313-315
  7. Li, C. and Tan, Y., 2004, 'A Neural Networks Model for Electrorheological Fluids', Smart Materials and Structures, Vol. 6, No. 3, pp. 351-359 https://doi.org/10.1088/0964-1726/6/3/012
  8. Han, Y. M., Lim, K. H. and Choi, S. B., 2006, 'Hysteresis Investigation of Magnetorheological Fluid Using Preisach Model', Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 16, No. 1, pp. 3-11 https://doi.org/10.5050/KSNVN.2006.16.1.003
  9. Rajesh Rajamani, 2006, Vehicle Dynamics and Control, Springer, New York, USA
  10. Wereley, N. M., Pang, L. and Kamath, G. M., 1998, 'Idealized Hysteresis Modeling of Electro-rheological and Magneto-rheological Dampers', Journal of Intelligent Material Systems and Structures, Vol. 9, pp. 642-649 https://doi.org/10.1177/1045389X9800900810
  11. Ma, X. Q., Rakheja, S. and Su, C.-Y., 2007, 'Development and Relative Assessments of Models for Characterizing the Current Dependent Hysteresis Properties of Magnetorheological Fluid Dampers', Journal of Intelligent Material Systems and Structures, Vol. 18, pp. 487-502 https://doi.org/10.1177/1045389X06067118