The Optimization of Biohydrogen Production Medium by Dark Fermentation with Enterobacter aerogenes

Enterobacter aerogenes의 혐기발효에 의한 바이오 수소 생산 배지의 최적화

  • Kim, Kyu-Ho (Department of Chemical Engineering, University of Seoul) ;
  • Choi, Young-Jin (Department of Chemical Engineering, University of Seoul) ;
  • Kim, Eui-Yong (Department of Chemical Engineering, University of Seoul)
  • 김규호 (서울시립대학교 화학공학과) ;
  • 최영진 (서울시립대학교 화학공학과) ;
  • 김의용 (서울시립대학교 화학공학과)
  • Published : 2008.02.29

Abstract

Hydrogen is considered as an energy source for the future due to its environmentally friendly use in fuel cells. A promising way is the biological production of hydrogen by fermentation. In this study, the optimization of medium conditions which maximize hydrogen production from Enterobacter aerogenes KCCM 40146 were determined. As a result, the maximum attainable cumulative volume of hydrogen was 431 $m{\ell}$ under the conditions of 0.5M potassium phosphate buffer, pH 6.5 medium containing 30 g/L glucose. The best nitrogen sources were peptone and tryptone for the cell growth as well as hydrogen production. The control of cell growth rate was found to be a important experimental parameter for effective hydrogen production

수소는 연료전지와 같은 친환경적인 용도로 인해 미래의 에너지로서 주목받고 있는데, 생물학적인 발효법은 수소의 생산을 위한 유망한 방법이다. 본 연구에서는 Enterobacter aerogenes KCCM 40146을 대상으로 수소 생산을 최대로 하기 위한 배지의 조건을 최적화하였다. 그 결과, 0.5M potassium phosphate buffer pH 6.5에서 glucose 30 g/L일 때 수소의 누적 농도가 431 $m{\ell}$로 최대값을 얻을 수 있었다. 질소원으로 peptone과 tryptone을 넣은 배지가 수소의 생산 뿐 아니라 균주의 성장에 가장 효율적이었다 한편, 미생물의 성장속도조절이 수소의 효율적 생산을 위해 중요한 실험변수임을 알 수 있었다.

Keywords

References

  1. 에너지관리공단 (2006), 에너지 지표
  2. 국제에너지기구 (2006), 연례 보고서
  3. 한국에너지기술연구원 (2007), 수소정책동향보고서(국제에너지현황 및 수소에너지 연구개발 동향)
  4. 한국기상청 (2006), 온도상승추이 보고서
  5. 에너지경제연구원 (2006), 에너지 포커스
  6. Shin Jong Hwan and Tai Hyun Park (2006), Biological Hydrogen Production Processes, Korean Chem. Eng. Res. 44(1), 16-22
  7. Mark D. Redwood and Lynne E. Macaskie (2006), A two-stage, two-organism process for biohydrogen from glucose, Int. J. Hydrogen Energy 31, 1514-1521 https://doi.org/10.1016/j.ijhydene.2006.06.018
  8. Xi Chen, Yaqin Sun, and ZhiLong Xiu (2006), Stoichiometric analysis of biological hydrogen production by fermentative bacteria, Int. J. Hydrogen Energy 31, 539-549 https://doi.org/10.1016/j.ijhydene.2005.03.013
  9. M. Morimoto and M. Atsuko (2004), Biological production of hydrogen from glucose by natural anaerobic microflora , Int. J. Hydrogen Energy 29, 709-713 https://doi.org/10.1016/j.ijhydene.2003.09.009
  10. H. Yokoi and T. Ohkawara (1995), Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39, J. Ferment. Bioeng. 80(6), 571-574 https://doi.org/10.1016/0922-338X(96)87733-6
  11. H. Yokoi and R. Maki (2002), Microbial production of hydrogen from starch-manufacturing wastes, Biomass and Bioenergy 22, 389-395 https://doi.org/10.1016/S0961-9534(02)00014-4
  12. Ching-Hsiung Wang, Ping-Jei Lin (2006), Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge, Process. Biochem. 41, 1353-1358 https://doi.org/10.1016/j.procbio.2006.01.016
  13. Yoon Woo Hyun, Hyun Kab Kim, and Tae Jin Lee (2006) , Study of Biological Hydrogen Gas Production under Anaerobic Fermentation, J. of KOREA, 14(1)
  14. Hiroyasu Ogino and Takashi Miura (2005), Hydrogen production from glucose by anaerobes, Biotechnol. Prog. 21, 1786-1788 https://doi.org/10.1021/bp050224r
  15. Herbert H. P. Fang and Hong Liu (2002), Effect of pH on hydrogen production from glucose by a mixed culture, Bioresource Technology 82, 87-93 https://doi.org/10.1016/S0960-8524(01)00110-9
  16. Jeong Ok Kim and Yong Hwan Kim (2005), Immobilization methods for continuous hydrogen gas production biofilm formation versus granulation, Process Biochemistry 40, 1331-1337 https://doi.org/10.1016/j.procbio.2004.06.008
  17. M. A. Rachman and Y. Furutani (1997) , Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes, J. Ferment. Bioeng. 83(4), 358-363 https://doi.org/10.1016/S0922-338X(97)80142-0
  18. H. Yokoi and T. Tokushige (1998), $H_2$ production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes, Biotechnol. Latter 20(2), 143-147 https://doi.org/10.1023/A:1005372323248
  19. Ko In Beom, Hang Sik Shin, and Yong Doo Lee (2006), Influence of Substrate Concentration and Hydraulic Retention Time on the Hydrogen Production Using Anaerobic Microflora , J. of KSBB, 911-916
  20. Kim Mi Sun, Y. S. Yoon, S. J. Sim, T. H. Park, and J. K. Lee (2002), Hydrogen and Organic Acids Production by Fermentation Using Various Anaerobic Bacteria, Trans. of the Korea Hydrogen and New Energy Society 13(4), 330-338