DOI QR코드

DOI QR Code

Electrochemical Characteristics of Osteoblast Cultured Ti-Ta Alloy for Dental Implant

골아세포가 배양된 치과 임플란트용 Ti-Ta합금의 전기화학적 특성

  • Kim, W.G. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, College of Dentistry, 2nd Stage of Brain Korea 21 for College of Dentistry) ;
  • Choe, H.C. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, College of Dentistry, 2nd Stage of Brain Korea 21 for College of Dentistry) ;
  • Ko, Y.M. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, College of Dentistry, 2nd Stage of Brain Korea 21 for College of Dentistry)
  • 김원기 (조선대학교 치과대학 생체재료학교실 및 생체재료나노계면할성화센터, 2단계 BK21) ;
  • 최한철 (조선대학교 치과대학 생체재료학교실 및 생체재료나노계면할성화센터, 2단계 BK21) ;
  • 고영무 (조선대학교 치과대학 생체재료학교실 및 생체재료나노계면할성화센터, 2단계 BK21)
  • Published : 2008.04.30

Abstract

Electrochemical behaviors of surface modified and MC3T3-E1 cell cultured Ti-30Ta alloys have been investigated using various electrochemical methods. The Ti alloys containing Ta were melted by using a vacuum furnace and then homogenized for 6 hrs at $1000^{\circ}C$. MC3T3-E1 cell culture was performed with MC3T3-E1 mouse osteoblasts for 2 days. The microstructures and corrosion resistance were measured using FE-SEM, XRD, EIS and potentiodynamic test in artificial saliva solution at $36.5{\pm}1^{\circ}C$. Ti-Ta alloy showed the martensite structure of ${\alpha}+{\beta}$ phase and micro-structure was changed from lamellar structure to needle-like structure as Ta content increased. Corrosion resistance increased as Ta content increased. Corrosion resistance of cell cultured Ti-Ta alloy increased predominantly in compared with non cell cultured Ti- Ta alloy due to inhibition of the dissolution of metal ion by covered cell. $R_p$ value of MC3T3-E1 cell cultured Ti-40 Ta alloy showed $1.60{\times}10^6{\Omega}cm^2$ which was higher than those of other Ti alloy. Polarization resistance of cell-cultured Ti-Ta alloy increased in compared with non-cell cultured Ti alloy.

Keywords

References

  1. M. Niinomi, Mater. Sci. Eng. A, 243 (1998) 231 https://doi.org/10.1016/S0921-5093(97)00806-X
  2. J. E. Davies, B. Lowenberg, A. Shiga, J. Biomed Mat. Res., 24 (1990) 1289 https://doi.org/10.1002/jbm.820241003
  3. M. Therin, A. Meunier, P. Christel, J. Mat. Sci. Mat. in Med., 2 (1991) 1 https://doi.org/10.1007/BF00701681
  4. N. R. Van, J. Mater. Sci., 22 (1987) 3801 https://doi.org/10.1007/BF01133326
  5. E. Kobayashi, L. K. Gardner, R. W. Toth, J. Prosthet Dent., 54 (1985) 410 https://doi.org/10.1016/0022-3913(85)90562-1
  6. M. F. Semlitsch, H. Weber, R. M. Streicher, R. Schon, Biomaterials, 13 (1992) 781 https://doi.org/10.1016/0142-9612(92)90018-J
  7. Y. Okazaki, S. Rao, S. Asao, T. Tateishi, S. Katsuda, Y. Furuki, J. Japan Inst. Metals, 9 (1996) 890
  8. A. K. Shukla, R. Balasubramaniam, S. Bhargava, J. Alloys Comp., 389 (2005) 144 https://doi.org/10.1016/j.jallcom.2004.08.005
  9. D. Kuroda, M. Niiomi, Materials Sci. and Eng., A 243 (2001) 244
  10. Y. L. Zhou, M. Niinomi, T. Akahori, Materials Sci. and Eng., A 384 (2004) 92
  11. Y. L. Zhou, M. Niinomi, T. Akahori, Materials Sci. and Eng., A 371 (2004) 283
  12. Y. L. Zhou, M. Niinomi, T. Akahori, H. Fukui, H. Toda, Materials Sci. and Eng., A 398 (2005) 28
  13. S. G. Fedotov, K. M. Konstantinov, R. G. Koknaev, E. P. Sinodova. Nauka Moscow, (1982) 29
  14. S. G. Fedotov, K. M. Konstantinov, E. P. Sinodova, Nauka Moscow, (1982) 78
  15. G. I. Nosova, Nauka Moscow, (1968)
  16. E. W. Collings, ASM (1986)
  17. R. Boyer, G. Welsch, E. W. Collings, Titanium Alloys, ASMI, (1994)
  18. K. Anselme, P. Linez, M. Bigerelle, Biomaterials, 21 (2000) 1567 https://doi.org/10.1016/S0142-9612(00)00042-9
  19. M. Bigerelle, K. Anselme, B. Noel, I. Ruderman, P. Hardouin, A Iost. Biomaterials, 23 (2002) 1563 https://doi.org/10.1016/S0142-9612(01)00271-X
  20. P. Linez-Bataillon, F. Monchau, M. Bigerelle, H. F. Hildebrand, Biomolecular Engineering, 19 (2002) 133 https://doi.org/10.1016/S1389-0344(02)00024-2
  21. N. Ibris, J. C. M. Rosca, Journal of Electroanalytical Chemistry, 52 (2002) 653
  22. J. E. G. Gonzalez, J. C. Mirza-Rosca, Journal of Electroanalytical Chemistry, 471 (1999) 109 https://doi.org/10.1016/S0022-0728(99)00260-0
  23. E. Kobayashi, T. J. Wang, H. Doi, T. Yoneyama, H. Hamanaka, Mater. Sci.: Mater. Med., 9 (1998) 567 https://doi.org/10.1023/A:1008909408948
  24. D. Krupa, J. Baszkiewicz, J. A. Kozubowski, A. Barcz, J. W. Sobzak, A. Biliniski, M. D. Lewandowska- Szumiel, B. Rajchel, Biomaterials, 22 (2001) 2139 https://doi.org/10.1016/S0142-9612(00)00405-1

Cited by

  1. Corrosion Characteristics of Ti alloy for Removable Partial Denture vol.14, pp.4, 2014, https://doi.org/10.5392/JKCA.2014.14.04.237
  2. Corrosion Behavior of Nanotube Formed on the Bone Plate of Ti-6Al-4V Alloy for Dental Use vol.43, pp.1, 2010, https://doi.org/10.5695/JKISE.2010.43.1.025