Studies on the Ozone Resistance and Physical Properties of SBR/EPDM Blend Compound due to EPDM Content Variation

EPDM 함량 변화에 따른 SBR/EPDM 블렌드 혼합물의 내오존성과 물리적 성질에 관한 연구

  • Ha, Ki-Ryong (Department of Chemical Engineering, Keimyung University) ;
  • Lee, Jong-Cheol (Department of Chemical Engineering, Keimyung University) ;
  • Kim, Tae-Geun (Department of Chemical Engineering, Keimyung University) ;
  • Hwang, Ki-Seob (Department of Chemical Engineering, Keimyung University)
  • Published : 2008.03.31

Abstract

Styrene-butadiene rubber(SBR) has good abrasion resistance, miscibility, and anti-vibration property. however, it is easily damaged by ozone and swelled by hydrocarbon fluids because of unsaturation part in main chain, that causes loss of visco-elasticity and reduction of product's life cycle. Therefore, object of this study is to cope with this problem. SBR is blended with various proportion of ethylene-propylene-diene terpolymer(EPDM), which has excellent ozone and oxygen resistance, to improve physical properties and ozone resistance, and diverse analytical techniques are used to measure morphology, glass transition temperature$(T_g)$, ozone-resistance, degradation temperature, static spring constant, hardness for considering a suitability for anti-vibration industrial product. We found that the blend consisting of SBR 70% and EPDM 30% showed no crack after ozone test and good miscibility between SBR and EPDM from this study.

Styrene-butadiene rubber(SBR)은 내마모성, 상용성, 방진성이 우수 하지만, SBR은 주쇄의 불포화기때문에 오존에 의해 쉽게 손상을 받고 탄화수소에 쉽게 팽윤되어 점탄성을 잃어버려 고무제품으로서의 수명을 단축시킨다. 따라서, 본 연구의 목적은 SBR 고무의 이러한 단점을 보완하기 위함이다. 내오존성과 기계적물성을 개선시키기 위해서 내오존성이 우수한 ethylene-propylene-diene terpolymer(EPDM)을 다양한 비율로 블렌드하고, 방진제품으로써의 적합성을 고려하기 위하여 다양한 분석기술을 사용하여 경도, 열분해 온도, 모폴러지, 유리전이온도, 내오존성, 정적 스프링정수를 측정하였다. 본 실험을 통하여 SBR과 EPDM 블렌드의 조성변화에 따른 특성을 연구한 결과, SBR에 대하여 EPDM 30% 블렌드시 상용성이 우수하고, 내오존성이 증가하는 것을 알 수 있었다.

Keywords

References

  1. Khrairi Nagdi, ''Rubber as an Engineering Material: Guideline for Users", B. C. Lee, Chapter 2, 9-10, Carl Hanser Verlag, Munich/FRG, 1993
  2. Toshihiko Maekawa, ''Quantitative characerization of styren-butadiene core-shell latexes by TOF-SIMS and pyroysis GC/MS", Applied surface Science, 252, 7018 (2006) https://doi.org/10.1016/j.apsusc.2006.02.171
  3. Yong-Lai Lu, Zhao Li, Zhong-Zhen Yu, Ming Tian, Li-Qun Zhang, and Yiu-Wing Mai, "Micro structure and properties of highly filled rubber/clay nanocomposites prepared by melt blending", Composites Science and Technology 67, 2903 (2007) https://doi.org/10.1016/j.compscitech.2007.05.018
  4. F. S. Conant, "Rubber Technology" Chapter 5. 3rd Van Nostrand, New York, 1987
  5. M. J. Fernandez-Berridi, N. Gonzalez, A Mugica, C. Bernicot, "Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR", Thernochirnica Acta, 444, 65 (2006) https://doi.org/10.1016/j.tca.2006.02.027
  6. Y. S. Lee, W. K. Lee, S. G. Cho, I. Kim, C. S. Ha, ''Quantitative analysis of unknown compositions in ternary polymer blends: A model study on NR/ SBR/BR system", Journal of Analytical and Applied Pyrolysis, 78(1), 85 (2007) https://doi.org/10.1016/j.jaap.2006.05.001
  7. M. J. Fernandez-Berridi, N. Gonzalez, A. Mugica, C. Bernicot, "Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR", Ihermochimica Acta, 444(1), 65 (2006) https://doi.org/10.1016/j.tca.2006.02.027
  8. ASTM D 2240-97, Standard Test Method for Rubber Property: Durometer Hardness
  9. ASTM D 1415-88(94), Standard Test Method for Rubber Property: International Hardness
  10. ASTM D 1414-94, Standard Test Method for Rubber O-Ring