DOI QR코드

DOI QR Code

Estimation of non-CO2 Greenhouse Gases Emissions from Biomass Burning in the Samcheok Large-Fire Area Using Landsat TM Imagery

Landsat TM 영상자료를 활용한 삼척 대형산불 피해지의 비이산화탄소 온실가스 배출량 추정

  • Won, Myoung-Soo (Division of Forest Fire, Korea Forest Research Institute) ;
  • Koo, Kyo-Sang (Division of Forest Fire, Korea Forest Research Institute) ;
  • Lee, Myung-Bo (Division of Forest Fire, Korea Forest Research Institute) ;
  • Son, Yeong-Mo (Division of Forest Sink and Forest Land Use, Korea Forest Research Institute)
  • 원명수 (국립산림과학원/산불연구과) ;
  • 구교상 (국립산림과학원/산불연구과) ;
  • 이명보 (국립산림과학원/산불연구과) ;
  • 손영모 (국립산림과학원/산림평가과)
  • Published : 2008.03.31

Abstract

This study was performed to estimate non-$CO_2$ greenhouse gases (i.e., GHGs) emission from biomass burning at a local scale. Estimation of non-$CO_2$ GHGs emission was conducted using Landsat TM satellite imagery in order to assess the damage degree in burnt area and its effect on non-$CO_2$ GHGs emission. This approach of estimation was based on the protocol of the 2003 IPCC Guidelines. In this study, we used one of the most severe fire cases occurred Samcheock in April, 2004. Landsat TM satellite imageries of pre- and post-fire were used 1) to calculate delta normalized burn ratio (dNBR) for analyzing burnt area and burn severity of the Samcheok large-fire and 2) to quantify non-$CO_2$ GHGs emission from different size of the burnt area and the damage degree. The analysis of dNBR of the Samcheok large-fire indicated that the total burnt area was 16,200ha and the size of the burnt area differed with the burn severity: out of the total burnt area, the burn severities of Low (dNBR < 152), Moderate (dNBR = 153-190), and High (dNBR = 191-255) were 35%, 33%, and 32%, respectively. It was estimated that the burnt areas of coniferous forest, deciduous forest, and mixed forest were about 11,506ha (77%), 453ha (3%), and 2,978ha (20%), respectively. The magnitude of non-$CO_2$ GHGs emissions from the Samcheok large-fire differed significantly, showing 93% of CO (44.100Gg), 6.4% of CH4 (3.053Gg), 0.5% of $NO_x$ (0.238Gg), and 0.1% of $N_2O$ (0.038Gg). Although there were little changes in the total burnt area by the burn severity, there were differences in the emission of non-$CO_2$ GHGs with the degree of the burn severity. The maximum emission of non-$CO_2$ GHGs occurred in moderate burn severity, indicating 47% of the total emission.

지구온난화 문제는 국지적, 국내적 환경문제가 아닌 범지구적 차원에서 해결하여야 할 문제로 온실가스 규제와 지구환경의 조화를 위한 국제적 노력이 요구된다. 따라서 본 연구에서는 바이오매스 연소시 배출되는 비이산화탄소의 배출량을 정량적으로 추정하기 위한 방법론을 제시하고자 하였고, 산불피해지 구분은 물론 피해강도에 따라 배출되는 비이산화탄소 온실가스를 정량적으로 추정하기 위해 위성영상 자료를 활용하였으며, IPCC 기준인 Tier 2 수준으로 비이산화탄소 온실가스 배출량을 추정하였다. 본 연구에서는 2000년 4월에 발생한 우리나라 최대 산불인 삼척피해지를 대상으로 산불 전후 동일시기에 관측된 Landsat 위성영상으로부터 정규탄화지수(NBR)를 추출하여 산불피해지역과 피해강도를 정량적으로 분석하였다. 위성영상에서 추출된 피해면적과 피해강도별 분석자료는 바이오매스 연소로 인해 직접 배출되는 비이산화탄소 배출량 추정을 위한 활동자료로 활용하였다. 비이산화탄소 배출량 추정을 위해 IPCC의 추정식을 이용하였다. 산불피해강도별 연소효율은 피해강도가 '심'(burn severity: high)인 수관화 지역의 경우 0.43, 피해강도 '중'(burn severity: moderate) 0.40, 그리고 피해강도가 '경'인 지표화지(burn severity: low)의 경우는 0.15를 적용하였다. 바이오매스 연소시 배출되는 비이산화탄소 온실가스별 배출계수는 CO 130, $CH_4$ 9, $NO_x$ 0.7, $N_2O$ 0.11 값을 적용하였다. 삼척 산불피해지의 dNBR에 의한 피해강도 분석 결과, 전체 피해면적은 16,200ha로 나타났으며, 피해강도는 '경(Low: dNBR 152 이하)' 35%, '중(Moderate: dNBR 153-190)' 33%, '심(High: dNBR 191-255)' 32%의 면적분포를 보였다. 임상별 피해면적은 침엽수림 11,506ha(77%), 활엽수림 453ha(3%) 그리고 혼효림에서 2,978ha(20%)의 피해를 입은 것으로 평가되었다. 삼척 산불피해지의 바이오매스 연소로 인해 직접 배출된 비이산화탄소 배출량 추정 결과, CO 93%, CH4 6.4%, $NO_x$ 0.5%, $N_2O$ 0.1%의 순으로 배출량이 많았다. 삼척 산불피해지의 강도별 피해면적은 32%$\sim$35%의 분포로 고른 양상을 보이고 있지만 피해강도 '중' 지역에서 배출된 비이산화탄소의 양이 전체의 47%를 차지하여 배출율이 가장 높은 것으로 나타났다. 삼척산불 피해지의 총 비이산화탄소 온실가스 배출량은 CO 44.100Gg, CH4 3.053Gg, $NO_x$ 0.238Gg 그리고 $N_2O$는 0.038Gg이 배출된 것으로 추정되었다.

Keywords

References

  1. Cocke, A. E., P. Z. Fule, and J. E. Crouse, 2005: Comparison of burn severity assessments using differenced normalized burn ratio and ground data. International Journal of Wildland Fire 14(2), 189-198 https://doi.org/10.1071/WF04010
  2. Crutzen, P. J., and M. O. Andreae, 1990: Biomass burning in the Tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250(4988), 1669-1678 https://doi.org/10.1126/science.250.4988.1669
  3. Delmas, R., J. P. Lacaux, and D. Brocard, 1995: Determination of Biomass Burning Emission factors: Methods and Results. Environmental Monitoring and Assessment 38, Kluwer Academic Publishers, 181-204 https://doi.org/10.1007/BF00546762
  4. IPCC, 1994: Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios
  5. IPCC, 2003: Good Practice Guidance for Land Use, Land-Use Change and Forestry, National Greenhouse Gas Inventories Programme, the Institute for Global Environmental Strategies (IGES) for the IPCC
  6. Jensen, J. R., 2000: Remote Sensing of the Environment: An Earth Resources Perspective, Prentice Hall, 204pp
  7. Key, C. H., and N. C. Benson, 2002: Measuring and remote sensing of burn severity. US Geological Survey Wildland Fire Workshop, 31 October to 3 November 2000, Los Alamos, NM. USGS Open-File Report 02-11
  8. Kauffman, J. B., D. L. Cummings, D. E. Ward, and R. Babbitt, 1995: Fire in the Brazilian Amazon: 1. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia 104(4), 397-408
  9. Key, C. H., and N. C. Benson, 2006: Landscape assessment: sampling and analysis methods. USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-164-CD. Ogden, UT
  10. Korea Forest Service, 2005: Statistical yearbook of forestry 2005(35), 38-39. (in Korean)
  11. Korea Forest Service, 2006: Forest fire statistics: 2006 annual report, 26-27. (in Korean)
  12. Lentile, L. B., Z. A. Holden, A. M. S. Smith, M. J. Falkowski, A. T. Hudak, P. Morgan, S. A. Lewis, P. E. Gessler, and N. C. Benson, 2006: Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire 15(3), 319-345 https://doi.org/10.1071/WF05097
  13. Roy, D. P., L. Boschetti, and S. N. Trigg, 2006: Remote sensing of fire severity: assessing the performance of the normalized burn ratio. IEEE Geoscience and Remote Sensing Letters 3(1), 112-116 https://doi.org/10.1109/LGRS.2005.858485
  14. Son, Y. M., J. C. Kim, K. H. Lee, and R. H. Kim, 2007: Forest biomass assessment in Korea. Korea Forest Research Institute, Research Paper 07-22. (in Korean)
  15. van Wagtendonk, J. W., R. R. Root, and C. H. Key, 2004: Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of Environment 92(3), 397-408 https://doi.org/10.1016/j.rse.2003.12.015
  16. Ward, D. E., 1990: Factors influencing the emissions of gases and particulate matter from biomass burning. Fire in the Tropical Biota, J. G. Goldammer (Eds,), Springer, 418-436
  17. Won, M. S., K. S. Koo, and M. B. Lee, 2006: An analysis of forest fire occurrence hazards by changing temperature and humidity of ten-day intervals for 30 years in spring. Korean Journal of Agricultural and Forest Meteorology 8(4), 250-259. (in Korean with English abstract)
  18. Won, M. S., K. S. Koo, and M. B. Lee, 2007: A quantitative analysis of severity classification and burn severity for the large forest fire areas using normalized burn ratio of landsat imagery. The Korean Association of Geographic Information Studies 10(3), 80-92. (in Korean with English abstract)

Cited by

  1. Construction of a REDD Monitoring System Using GIS and RS Techniques vol.9, pp.2, 2012, https://doi.org/10.5772/45661
  2. Analysis of Burn Severity in Large-fire Area Using SPOT5 Images and Field Survey Data vol.16, pp.2, 2014, https://doi.org/10.5532/KJAFM.2014.16.2.114
  3. Estimation on Greenhouse Gases(GHGs) Emission of Large Forest Fire Area in 2013 vol.17, pp.3, 2014, https://doi.org/10.11108/kagis.2014.17.3.054
  4. A Study on the Emissions of CO2/non-CO2 for the Crown Layer and Surface Layer of Pine Trees vol.30, pp.1, 2015, https://doi.org/10.14346/JKOSOS.2015.30.1.111
  5. Relationship between landscape structure and burn severity at the landscape and class levels in Samchuck, South Korea vol.258, pp.7, 2009, https://doi.org/10.1016/j.foreco.2009.07.017
  6. Effects of heterogeneity of pre-fire forests and vegetation burn severity on short-term post-fire vegetation density and regeneration in Samcheok, Korea vol.10, pp.1, 2014, https://doi.org/10.1007/s11355-013-0214-y
  7. Estimation of the Greenhouse Gas Inventory on Forest Land at Provincial Level vol.16, pp.4, 2014, https://doi.org/10.5532/KJAFM.2014.16.4.336
  8. Simulation of Detailed Wind Flow over a Locally Heated Mountain Area Using a Computational Fluid Dynamics Model, CFD_NIMR_SNU - a fire case at Mt. Hwawang - vol.11, pp.4, 2009, https://doi.org/10.5532/KJAFM.2009.11.4.192
  9. Structural Equation Model for Burn Severity with Topographic Variables and Susceptible Forest Cover vol.10, pp.7, 2018, https://doi.org/10.3390/su10072473