DOI QR코드

DOI QR Code

Growth Dynamics and Carbon Incorporation of the Seagrass, Zostera marina L. in Jindong Bay and Gamak Bay on the Southern Coast of Korea

진동만과 가막만에 서식하는 잘피 개체군의 생장 동태 및 탄소고정량 추정

  • Published : 2008.09.30

Abstract

Since seagrasses in the coastal and estuarine ecosystems achieve high levels of production, they require high inorganic carbon and nutrient incorporation. Thus, seagrasses may play a significant role in carbon and nutrient cycling in the coastal and estuarine ecosystems. To examine growth dynamics of Zostera marina L. environmental factors such as underwater irradiance, water temperature, and salinity, and biological parameters such as shoot density, biomass, shoot morphology, and leaf productivity were measured in two bay systems (Jindong Bay and Gamak Bay) on the southern coast of Korea. While underwater irradiance did not show distinct seasonal trend, water temperature at both sites exhibited clear seasonal trend throughout the experimental period. Shoot density increased dramatically during winter due to the increased seedlings through germination of seeds in Jindong Bay and due to the increased lateral shoots in Gamak Bay. Eelgrass biomass increased during winter and decreased during summer. Maximum biomass in Jindong Bay and Gamak Bay was 250.2 and 232.3 g dry weight m–a2, respectively. Carbon incorporation into the eelgrass leaf tissues was estimated from productivity and leaf tissues carbon content. The calculated annual carbon incorporations at the Jindong Bay and Gamak Bay sites were 163 and 295 g C m–`2 y–`1, respectively. This high carbon incorporation into seagrass tissues suggests that seagrass habitats play an important role as a carbon absorber in the coastal and estuarine ecosystems.

Keywords

References

  1. Barber B.J. and Behrens P.J. 1985. Effects of elevated temperature on seasonal in situ leaf productivity of Thalassia testudinum Banks ex Konig and Syrigodium filiforme Kutzing. Auqat. Bot. 22:61-69 https://doi.org/10.1016/0304-3770(85)90029-4
  2. Blackburn T.H., Nedwell D.B. and Wiebe W.J. 1994. Active Mineral cycling in a Jamaican seagrass sediment. Mar. Ecol. Prog. Ser. 110:233-239 https://doi.org/10.3354/meps110233
  3. Cebrian J. and Durate C.M. 2001. Detrial stocks and dynamics of the seagrass Posidonia oceanica (L.) Delille in the Spanish Mediterranean. Aquat. Bot. 70:295-309 https://doi.org/10.1016/S0304-3770(01)00154-1
  4. Charpy L. and Charpy-Roubaud C.J. 1990. A model of lightprimary production relationship in an atoll lagoon (Tikehau, Tuamotu Archipelago, French Polynesia). UK, J. Mar. Biol. Assoc. 70:357-369 https://doi.org/10.1017/S0025315400035463
  5. Dennison W.C. 1987. Effects of light on seagrass photosynthesis, growth and depth distribution. Aquat. Bot. 27:15-26 https://doi.org/10.1016/0304-3770(87)90083-0
  6. Dennison W.C. and Alberte R.S. 1985. Role of daily light period in the depth distribution of Zostera marina (eelgrass). Mar. Ecol. Prog. Ser. 25:51-61 https://doi.org/10.3354/meps025051
  7. Dennison W.C., Orth R.J., Moore K.A., Stevenson J.C., Carter V., Kollar S., Bergstrom P.W. and Batiuk R.A. 1993. Assessing water quality with submerged aquatic vegetation. BioScience 43:86-94 https://doi.org/10.2307/1311969
  8. Duarte C.M. and Cebrian J. 1996. The fate of marine autotrophic production. Limnol. Oceanogr. 41:1758-1766 https://doi.org/10.4319/lo.1996.41.8.1758
  9. Fourqurean J.W. and Zieman J.C. 1991. Photosynthesis, respiration and whole plant carbon budget of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser. 69:161-170 https://doi.org/10.3354/meps069161
  10. Green E.P. and Short F.T. 2003. World atlas of seagrasses. Prepared by the UNEP World Conservation Monitoring Centre. University of California Press, Berkeley, 298 pp
  11. Hemminga M.A. and Duarte C.M. 2000. Seagrass Ecology. Cambridge University Press, Cambridge, 298 pp
  12. Hemminga M.A., Harrison P.G. and Vanlent F. 1991. The balance of nutrient losses and gains in seagrass meadows. Mar. Ecol. Prog. Ser. 71:85-96 https://doi.org/10.3354/meps071085
  13. Herzka S.Z. and Dunton K.H. 1998. Light and carbon balance in the seagrass Thalassia testudinum:evaluation of current production models. Mar. Biol. 132:711-721 https://doi.org/10.1007/s002270050435
  14. Holmquist J.G., Powell G.V.N. and Sogard S.M. 1989. Decapod and stomatopod Assemblages on a system of seagrasscovered mud banks in Florida Bay. Mar. Biol. 100:473-483 https://doi.org/10.1007/BF00394824
  15. IPCC 2007. Summary for Policymakers. In:Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. and Miller H.L. (eds), Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
  16. Kaldy J.E. 2006. Carbon, nitrogen, phosphorus and heavy metal budget:how large is the eelgrass (Zostera marina L.) sink in a temperate estuary? Mar. Poll. Bul. 52:342-353 https://doi.org/10.1016/j.marpolbul.2005.11.019
  17. Kaldy J.E. and Lee K.-S. 2007. Factor controlling Zostera marina L. growth in the eastern and western Pacific Ocean:Comparisons between Korea and oregon, USA. Aquat. Bot. 87:16-126 https://doi.org/10.1016/j.aquabot.2007.03.008
  18. Kentula M.E. and McIntire C.D. 1986. The autecology and production dynamics of eelgrass (Zostera marina) beds. Mar. Biol. 66:59-65 https://doi.org/10.1007/BF00397255
  19. Kim J.H., Lee K.H., Park C.W., Seo J.W., Son Y.M., Kim K.H., Youn H.J., Park C.R., Lee S.W. and Oh J.S. 2004. Nonmarket valuation of forest resources in Korea. Korean Institue of Forest Restoration 10:7-15
  20. Kim K.Y. and Choi T.S. 2004. Variability in abundance and morphological attributes of Zostera marina L. from the southern coast of korea. Bot. Mar. 47:287-294 https://doi.org/10.1515/BOT.2004.034
  21. Kwak S.N. and Klumpp D.W. 2004. Temporal variation in species composition and abundance of fish and decapods of a tropical seagrass bed in Cockle Bay, North Queenland, Australia. Aquat. Bot. 78:119-134 https://doi.org/10.1016/j.aquabot.2003.09.009
  22. Larkum A.W.D., Orth R.J. and Duarte C.M. 2006. Seageass:biology, ecology and conservation, Springer, Netherlands, 691pp
  23. Lee K.-S. and Dunton K.H. 1996. Production and carbon reserve dynamics of the seagrass Thalassia testudinum in Corpus Christi Bay, Texas, USA. Mar. Ecol. Prog. Ser. 143:201-210 https://doi.org/10.3354/meps143201
  24. Lee K.-S. and Dunton K.H. 1999. Inorganic nitrogen acquisition in the seagrass Thalassia testudinum:development of a Whole-plant nitrogen budget. Limnol. Oceanogr. 44:1204-1215 https://doi.org/10.4319/lo.1999.44.5.1204
  25. Lee K.-S. and Dunton K.H. 2000. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser. 196:39-48 https://doi.org/10.3354/meps196039
  26. Lee. K.-S and Lee S.Y. 2003. The seagrass of the republic of Korea. In:Green E.P. and Short F.T. (eds), World atlas of seagrasses. Prepared by the UNEP World conservation monitoring centre. University of California Press, Berkeley, pp. 193-198
  27. Lee K. -S., Short F.T. and Burdick D.M. 2004. Development of a nutrient pollution indicator using the seagrass, Zostera marina, along nutrient gradients in three New England estuaries. Aquat. Bot. 78:197-216 https://doi.org/10.1016/j.aquabot.2003.09.010
  28. Lee K.-S., Park S.R. and Kim J.-B. 2005. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Mar. Biol. 147:1091-1108 https://doi.org/10.1007/s00227-005-0011-8
  29. Lee. K.-S., Park S.R. and Kim Y.K. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses:A review. J. Exp. Mar. Biol. Ecol. 350:144-175 https://doi.org/10.1016/j.jembe.2007.06.016
  30. Lee Y.G., Hwang J.Y. and Jung K.K. 1995. Surface sediment characteristics and clay minerals in Kamag Bay. J. Korean Earth Science Society 6:477-488
  31. McRoy C.P. and McMillan C. 1977. Production and ecology and Physiology of seagrasses. In:McRoy C.P. and Helfferich P. (eds), Seagrass Ecosystems:A Scientific Perspective. Dekker, New York. pp. 53-88
  32. Montague C.L. and Ley J.A. 1993. A possible effect of salinity fluctuation on abundance of benthic vegetation and associated fauna in northeastern Florida Bay. Estuaries 16:703-717 https://doi.org/10.2307/1352429
  33. Nakaoka M. and Kouchi N. 2003. Seasonal dynamics of Zostera caulescens:relative importance of flowering shoots to net production. Aquat. Bot. 77:277-293 https://doi.org/10.1016/j.aquabot.2003.08.002
  34. Palacios S.L. and Zimmerman R.C. 2007. Response of eelgrass Zostera marina to CO$_2$ enrichment:possible impacts of climate change and potential for remediation of coastal habitats. Mar. Ecol. Prog. Ser. 344:1-13 https://doi.org/10.3354/meps07084
  35. Park J.I. and Lee K.-S. 2007. Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Mar. Pollut. Bull. 54:1238-1248 https://doi.org/10.1016/j.marpolbul.2007.03.020
  36. Parsons T.R., Maita Y. and Lalli C.M. 1984. A manual of chemical and biological methods for seaweater analysis. Pergammon Press, New York, 173 pp
  37. Pedersen M.F., Paling E.I. and Walker D.I. 1997. Nitrogen uptake and allocation in the seagrass Amphibolis antartica. Aquat. Bot. 6:105-117
  38. Phillips R.C., McMillan C. and Bridges K.W. 1983. Phenology of eelgrass, Zostera marina L., along latitudinal gradients on North America. Aquat. Bot. 15:145-156 https://doi.org/10.1016/0304-3770(83)90025-6
  39. Short, F.T. 1983. The seagrass, Zostera marina L.:Plant morphology and bed structure in relation to sediment ammonium in Izembek Lagoon, Alaska. Aquat. Bot. 16:149-161 https://doi.org/10.1016/0304-3770(83)90090-6
  40. Short, F.T. 1987. Effects of sediment nutrients on seagrasses:literature review and mesocosm experiment. Aquat. Bot. 27:41-57 https://doi.org/10.1016/0304-3770(87)90085-4
  41. Short F.T. and Short C.A. 1984. The seagrass filter:purification of coastal water. In:Kennedy V.S. (ed.), The estuary as a filter. Academic Press. pp. 395-413
  42. Short F.T. and Neckles H.A. 1999. The effects of global Climate Change on seagrasses. Aquat. Bot. 63:169-196 https://doi.org/10.1016/S0304-3770(98)00117-X
  43. Stapel J., Arts T.L., van Duynhoven B.H.M., de Groot J.D., van den Hoogen P.H.W. and Hemminga M.A. 1996. Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the spermonde Archipelago, Indonesia. Mar. Ecol. Prog. Ser. 134:195-206 https://doi.org/10.3354/meps134195
  44. Van Duin E.H.S., Blom G., Los F.J., Maffione R., Zimmerman R., Cerco C.F., Dortch M. and Best E.P.H. 2001. Modeling underwater light climate in relation to sedimentation resuspension, water quality and autotrophic growth. Hydrobiologia 444:25-42 https://doi.org/10.1023/A:1017512614680
  45. Zieman J.C. 1974. Methods for the study of growth and production of turtle grass, Thalassia testudinum Konig. Aquaculture 4:139-143 https://doi.org/10.1016/0044-8486(74)90029-5

Cited by

  1. Growth dynamics of eelgrass, Zostera marina, in the intertidal zone of Seomjin Estuary, Korea vol.48, pp.3, 2013, https://doi.org/10.1007/s12601-013-0021-2
  2. Variation in abundance and species composition of fishes in eelgrass (Zostera marina) bed and around Geomundo vol.51, pp.4, 2015, https://doi.org/10.3796/KSFT.2015.51.4.484
  3. Growth dynamics of the seagrass, Zostera marina in Jindong Bay on the southern coast of Korea vol.27, pp.3, 2012, https://doi.org/10.4490/algae.2012.27.3.215
  4. Annual and perennial life history strategies of Zostera marina populations under different light regimes vol.509, 2014, https://doi.org/10.3354/meps10899
  5. Seagrass Distribution in Deukryang Bay vol.42, pp.5, 2009, https://doi.org/10.5657/kfas.2009.42.5.509
  6. Spatial Distribution and Ecological Characteristics of Zostera marina and Zostera japonica in the Seomjin Estuary vol.43, pp.4, 2010, https://doi.org/10.5657/kfas.2010.43.4.351
  7. Growth Dynamics of Zostera marina Transplants in the Nakdong Estuary Related to Environmental Changes vol.44, pp.5, 2011, https://doi.org/10.5657/KFAS.2011.0533
  8. Growth and Population Dynamics of Zostera marina Due to Changes in Sediment Composition in the Seomjin Estuary, Korea vol.20, pp.1, 2015, https://doi.org/10.7850/jkso.2015.20.1.43
  9. populations on the southern coast of Korea pp.01739565, 2019, https://doi.org/10.1111/maec.12537