DOI QR코드

DOI QR Code

Investigation of Pintle Shape Effect on the Nozzle Performance

핀틀 형상이 노즐 성능에 미치는 영향에 관한 연구

  • 김중근 (국방과학연구소 1기술본부 6부) ;
  • 박종호 (충남대학교 BK21 메카트로닉스사업단)
  • Published : 2008.08.04

Abstract

Typical solid rocket motors have a fixed propellant grain shape and nozzle throat size resulting in a fixed motor thrust. Pintle nozzle has been suggested as a means of providing variable thrust while maintaining the inherent advantage of solid rocket motors. In this study, the pintle shape effect on nozzle performance is investigated using experimental-aided Computational Fluid Dynamics(CFD). The pintle shape is modified by a principle of monotony. CFD analysis is performed using Fluent by applying the turbulent model. This analysis indicates that nozzle thrust and pintle load are influenced by change of nozzle shock pattern and flow separation due to pintle shape and there exists a high-performing pintle shape.

고체 추진기관은 고정된 추진제 그레인 형상과 노즐목 때문에 정해진 단순 추력을 가지게 된다. 핀틀 노즐은 기존의 고체 추진기관의 장점을 가지면서도 추력 조절이 불가능한 단점을 보완하기 위해 제안된 방법이다. 본 연구에서는 핀틀 형상이 노즐 성능에 미치는 영향을 실험과 수치해석 방법으로 평가하였다. 핀틀 형상은 단순성의 원리에 근거하여 변경하였으며 각각의 형상에 대한 내부 유동장은 난류모델을 적용하여 Fluent로 해석하였다. 본 연구로부터 핀틀 형상이 노즐내의 충격파 구조 및 유동박리 영향을 주어 노즐 추력 및 핀틀 하중에 영향을 미침과 최적의 노즐 성능을 발휘할 수 있는 핀틀 형상이 존재함을 확인하였다.

Keywords

References

  1. Charles T. Levinsky, and Gerald F. Kobalter, "Feasibility demonstration of a single chamber controllable solid rocket motor", AFRPL-TR-67-300, 1968
  2. M.J. Ostrander, J.L. Bergmans, and M.E. Thomas, "Pintle motor challenges for tactical missile", AIAA-2000-3310, 2000
  3. S. Burroughs, "Status of army pintle technology for controllable thrust propulsion", AIAA-2002-3598, 2001
  4. Christina A. Davic, and Amy B. Gerads, "Variable thrust solid propulsion control using LABVIEW", AIAA-2003-5241, 2003
  5. E. Leon Morrisette, and Theodore J. Goldberg, "Turbulent-flow separation criteria for overexpanded supersonic nozzles", NASA Report-1207, 1978
  6. A. Hamed, and C. Vogiatzist, " Overexpanded 2-dimensional convergent -divergent nozzle performance - Effect of 3-dimensional flow interactions", Journal of Propulsion and power, Nol. 14, No. 2, 1990, pp. 234-240 https://doi.org/10.2514/2.5272
  7. Dimitri Papamoschou, and Andreas Zill, " Fundamental investigation of supersonic nozzle flow separation", AIAA-2004-1111
  8. Erich A. Wilson, Dan Adler, and Pinhas Bar-Yoseph,"Nozzle performance modeling", AIAA journal, Vol. 40, No. 7, 2002, pp. 1331-1338 https://doi.org/10.2514/2.1822
  9. J. Ostlund, and B. Muhammad - Klingmann, "Supersonic flow separation with application to rocket engine nozzles", Applied Mechanics Review, Vol. 58, 2005, pp. 143-175 https://doi.org/10.1115/1.1894402
  10. Schlichting, H., and Gersten,K., "Boundary layer theory", Springer, Berlin Heidelberg, 1997
  11. Holden M., "Shock wave-turbulent boundary layer interaction in hypersonic flow", AIAA-72-74, 1972
  12. Jean-Marie Grange, John M. Klineberg, and Lester Lees, "Laminar Boundary Layer Separation and Near-wake flow for a Smooth Blunt Body at Supersonic and Hypersonic Speeds", AIAA Paper No. 67-62

Cited by

  1. Experimental Study on Unsteady-state Characteristics of a Pintle Thruster with Variable Pintle Speeds vol.44, pp.3, 2016, https://doi.org/10.5139/JKSAS.2016.44.3.247
  2. Numerical Study of the Dynamic Characteristics of Pintle Nozzles for Variable Thrust vol.31, pp.1, 2015, https://doi.org/10.2514/1.B35257
  3. Thrust Control by Fluidic Injection in Solid Rocket Motors vol.33, pp.4, 2017, https://doi.org/10.2514/1.B36264
  4. Dynamic Characteristics of Pintle Nozzle about Changes of Chamber Boundary Condition vol.22, pp.5, 2018, https://doi.org/10.6108/KSPE.2018.22.5.022
  5. Three-dimensional Effects of an Axi-symmetric Pintle Nozzle vol.22, pp.6, 2018, https://doi.org/10.6108/KSPE.2018.22.6.047