DOI QR코드

DOI QR Code

인공위성 플룸과 기저면의 상호 작용에 관한 해석

Detailed Analysis of Thrust Plume and Satellite Base Region Interaction

  • 김재강 (한국과학기술원 항공우주공학과 대학원) ;
  • 권오준 (한국과학기술원 항공우주공학과) ;
  • 이균호 (한국항공우주연구원) ;
  • 김수겸 (한국항공우주연구원) ;
  • 유명종 (한국항공우주연구원)
  • 발행 : 2008.11.04

초록

인공위성의 추력기에서 발생되는 플룸과 기저면의 상호 작용에 관한 연구를 직접모사법을 사용하여 실시하였다. 질소와 수소 분자의 충돌에 의한 회전-병진 에너지의 교환을 정확하게 모사하기 위하여 최근에 연구 되어진 질소와 수소 분자의 회전 에너지 이완 모델을 사용하였다. 추력기 플룸과 기저면의 상호 작용 해석을 위하여 플룸 분자들의 수밀도 분포와 회전, 병진 온도 분포, 열전달량, 압력 등에 대하여 다양한 운영 조건에 맞추어 해석을 실시하였다. 그 결과 기저면에서는 질소 분자보다 수소 분자의 분포가 매우 큰 것과, 분포하는 대부분의 수소 분자가 회전 에너지에 대해 비평형 상태로 분포 하는 것을 확인 하였다. 이는 수소 분자의 정확한 회전 에너지 이완 모델의 필요성을 보여주고 있는 결과이며, 본 연구의 경우 가장 최근의 수소의 회전 에너지에 관련된 모델을 사용함으로써 플룸과 기저면의 상호 작용 해석에 대한 정확도를 증진 시켰다.

The interaction between thrust plume and satellite base region was investigated by using direct simulate Monte-Carlo calculations. For the accurate simulation of N2 and H2 collisions and rotation-translation transition, a variable soft-sphere model and a recent rotational relaxation model of N2 and H2 were used. For the investigation of the interaction between thrust plume and base region, the number density distribution for each species, translational and rotational temperature distributions, heat flux, and pressure were examined by direct simulation of Monte-Carlo calculations. It was found that most of the surface properties are affected by H2 collisions and a strong non-equilibrium state is observed at the base region. It was demonstrated that an accurate model is needed to simulate H2 collisions and the rotation-translation transition. The results by the present calculation are more accurate than previous direct simulation Monte-Carlo calculations because more accurate rotational relaxation models were used in simulating the inelastic collisions.

키워드

참고문헌

  1. G. A. Bird, Molecular gas dynamics and the direct simulation of gas flows, Clarendon, Oxford, 1994.
  2. I. D. Boyd and J. P. W. Stark, "Modeling of a small hydrazine thruster plume in the transition flow regime", Journal of Propulsion and Power, Vol. 6, No. 2, 1990, pp. 121-126. https://doi.org/10.2514/3.23232
  3. I. D. Boyd, P. F. Penko, D. L. Meissner, and K. J. DeWitt, "Experimental investigations of low density nozzle and plume flows of nitrogen", AIAA Journal, Vol. 30, No. 10, 1992, pp. 2453-2461. https://doi.org/10.2514/3.11247
  4. D. Giordano, M. Ivanov, A. Kashkovsky, G. Markelov, G. Tumino, and G. Koppenwallner, "Application of numerical multizone approach to the study of satellite plume", Journal of Spacecraft and Rockets, Vol. 35, No. 4, 1998, pp. 502-508. https://doi.org/10.2514/2.3359
  5. J. H. Park and S. W. Baek, "Direct simulation Monte Carlo analysis of thruster plume/satellite base region interaction", AIAA Journal, Vol. 42, No. 8, 2004, pp. 1622-1632. https://doi.org/10.2514/1.1975
  6. S. P. Sharma and D. W. Schwenke, "Rate parameters for coupled rotation-vibration- dissociation phenomena in H2", Journal of Thermophysics and Heat Transfer, Vol. 5, No. 4, 1991, pp. 469-480. https://doi.org/10.2514/3.289
  7. J. G. Kim, O. J. Kwon, and C. Park, "State-to-state rate coefficients and master equation study for $H_2+H$ and +He", AIAA Paper 2008-1265, Reno, Jan., 2008.
  8. I. J. Wysong and D. C. Wadsworth, "Assessment of rotational collision number of nitrogen at high temperature and its possible effect on modeling of reaction shocks", Proceedings of the 21th Internaltion Symposium on Rarefied Gas Dynamics, Vol. 2, Pergamon, New York, 1998, pp. 321-328.
  9. S. P. Sharma, "Rotational relaxation of molecular hydrogen at moderate temperature", Journal of Thermophysics and Heat Transfer, Vol. 8, No. 1, 1994, pp. 35-39. https://doi.org/10.2514/3.498
  10. I. D. Boyd, "Relaxation of discrete rotational energy distributions using a Monte Carlo method", Physics of Fluids A, Vol. 5, No. 9, 1993, pp. 2278-2286. https://doi.org/10.1063/1.858531
  11. C. Park, Nonequilibrium hypersonic aerothermodynamics, John Wiley&Sons, New York, 1990.
  12. NIST web site; http://webbook.nist.gov/
  13. J. G. Parker, "Rotational and vibrational relaxation in diatomic gases", Physics of Fluids, Vol. 2, No. 4, 1959, pp. 449-462. https://doi.org/10.1063/1.1724417
  14. C. Park, R. L. Jaffe, and H. Partridge, "Chemical kinetic parameters of hyperbolic earth entry", Journal of Thermophysics and Heat Transfer, Vol. 15, No. 1, 2001, pp. 76-90. https://doi.org/10.2514/2.6582
  15. J. G. Kim, O. J. Kwon, and C. Park, "A high temperature elastic collision model for DSMC based on collision integrals", AIAA Paper 2006-3803, SF, June, 2006.
  16. F. E. Lumpkin III, B. L. Hass, and I. D. Boyd, "Resolution of differences between collision number definitions in particle and continuum simulations", Physics of Fluids A, Vol. 3, No. 9, 1001, pp. 2282-2284. https://doi.org/10.1063/1.857964
  17. J. G. Kim, O. J. Kwon, and C. Park, "Modification and expansion of the generalized soft-sphere model to high temperature based on collision integrals", Physics of Fluids, Vol. 20, No. 1, 2008, pp. 017105. https://doi.org/10.1063/1.2832781