DOI QR코드

DOI QR Code

Influence of Gypsum, Popped Rice Hulls and Zeolite on Contents of Cation in Reclaimed Tideland Soils in Mangyeong

새만금 간척지에서 석고, 팽화왕겨 및 제올라이트 처리가 토양 중 양이온 함량에 미치는 영향

  • Baek, Seung-Hwa (Dept. of Biofood Science and Biotechnology, Chungbuk Provincial University of Science & Technology) ;
  • Lee, Sang-Uk (Div. of Life-Environment, College of Life Science and Natural Resources, Wonkwang University) ;
  • Kim, Dae-Geun (Div. of Life-Environment, College of Life Science and Natural Resources, Wonkwang University) ;
  • Heo, Jong-Wook (Div. of Life-Environment, College of Life Science and Natural Resources, Wonkwang University) ;
  • Kim, Seong-Jo (Div. of Life-Environment, College of Life Science and Natural Resources, Wonkwang University)
  • 백승화 (충북도립대학 바이오식품생명과학과) ;
  • 이상욱 (원광대학교 생명환경학부) ;
  • 김대근 (원광대학교 생명환경학부) ;
  • 허종욱 (원광대학교 생명환경학부) ;
  • 김성조 (원광대학교 생명환경학부)
  • Published : 2008.12.31

Abstract

Soil conditioner, such as $CaSO_4{\cdot}2H_2O$ (gypsum), popped rice hulls (PRH), and PRH with zeolite, were treated to the silt loam of Mangyeong in Saemangeum tideland reclaimed as 1550 (G1), 3100 (G2) and 6200 (G3) of gypsum kg/10 a, 1000(H1), 2000(H2), and 3000 (H3) of PRH kg/10 a, and 200 (HZ1), 400 (HZ2), 800 (HZ3) of zeolite kg/10 a added to 1500 PRH kg/10 a, respectively, each year until 2006 from 2004 for soil aggregation. Under these conditions with growing bermuda grass (Cynodon dactylon) it was analyzed cations in soil, such as $K^+$, $Na^+$, $Mg^{2+}$, and $Ca^{2+}$, at 60, 90, and 120 days after treatment (DAT) to research how soil conditioners influenced to change those contents in soils, respectively. The change of cations in soil was almost the same things as fine sandy loam that gypsum treated decreased remarkably contents of $K^+$, $Na^+$, $Mg^{2+}$ in soil. The change of $K^+$ content in soil by continuous using soil conditioners was gradually decreased in the order of 2004>2005>2006, regardless of the sorts and levels of soil treated conditioners, and $K^+$ content was high in the order of gypsum$Na^+$ content was high in the order of gypsum$Mg^{2+}$ content in soil was increased in the order of gypsum$Ca^{2+}$ content in soil was remarkably increased with continuous treatment of gypsum, and its level was in the order of 2004<2005<2006.

본 연구는 간척지 토양 중 미사질양토에 대하여 입단형성을 위해 가해진 토양개량제가 토양 중 양이온 함량변화에 미치는 영향을 분석하기 위하여 토양개량제로 이수석고 1550 (G1), 3100 (G2), 6200 (G3) kg/10 a, 팽화왕겨 1000 (H1), 2000 (H2), 3000 (H3) kg/10 a, 팽화왕겨 1500 kg/10 a에 zeolite 200 (HZ1), 400 (HZ2), 800 (HZ3) kg/10 a가 되도록 처리량을 달리하여 3년간 연용시용하고, 버뮤다그래스를 재배한 토양을 60, 90, 120일 경과 후 채취하여 토양개량제 연용이 토양 중 양이온 함량변화에 미치는 결과를 보고한다. 이수석고의 처리는 토양 중 K, Na, Mg의 함량을 현저히 감소시키는 것으로 나타났다. K 함량은 연용 토양개량제의 종류 및 처리수준과 관계없이 년도별 감소현상이 뚜렷하여서 2004 > 2005 > 2006 순으로 낮아지는 경향을 나타내었다. 또한 각 년도별 토양 중 K 함량은 안정적 변화를 보이면서 이수석고 < 팽화왕겨 < 팽화왕겨+zeolite 순으로 토양 중 K 함량이 높았다. Na 함량은 이수석고 < 팽화왕겨 < 팽화왕겨+zeolite의 순으로 연용 토양개량제의 종류 및 처리수준과 관계없이 각 년도에서에서 높게 나타났다. 특히 팽화왕겨 및 팽화왕겨+zeolite의 각각 처리는 이수석고 처리구와는 달리 대조구의 Na 함량 보다 높아지고 있는 현상이 계화도 세사양토의 결과와 비교가 되었다. Mg 함량은 년도별 변화는 이 수석고 < 팽화왕겨+zeolite < 팽화왕겨 순으로 높아지고, 연용기간이 길수록 높아지는 경향이었다. 이수석고 연용처리는 세사양토에서 보여준 결과와 유사하게 처리수준이 높을수록 토양 중 Ca이 높아지는 결과가 되었으며, 년도별 변화도 2004 < 2005 < 2006년의 순으로 연용년수에 따라 높아졌다.

Keywords

References

  1. Ahn, Y., Lee, S. H., Ji, K. J., Hong, B. D., Rho, H. M., Ryu, S. H., Lee, S. M., Han, K. H., Choi, W. J., Yun, S. I. and Choi, Y. D. (2002) Studies on changes of soil characteristics and utilization after tidal land reclamation. KARICO Project No. 2002- 05-09, 31-41
  2. Son, Y. M. and Song, S. H. (2005) Optimal farmland use and environmental-friendly farming in Saclaimed farmland. SARRL 3, 43-57
  3. Dontsova, K. M. and Norton, L. D. (2002) Clay dispersion, infiltration, and erosion as influenced by exchangeable Ca, and Mg. Soil Sci. 163, 184-193
  4. Sparks, D. L. (1995) Environmental soil chemistry. Academic Press, San Diego
  5. Lebron, I., Suarez, D. L. and Yoshida, T. (2002) Gypsum effect on the aggregate size and geometry of three sodic soils under reclamation. Soil Sci. Soc. Am. J. 66, 92-98 https://doi.org/10.2136/sssaj2002.0092
  6. Shainberg, I., Sumnur, M. E., Miller, W. P., Farina, M. P. W., Pavon, M. A., and Fey, M. V. (1989) Use of gypsum on soils: A review p.2-111. In Stewart, B. A.(ed.) Advances in soil science. Springer-Verlag, New York
  7. Carter, M. R. (2002) Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions. Agron. J. 94, 38-47 https://doi.org/10.2134/agronj2002.0038
  8. Mathur, S. P. (1991) Some comments on loss or accumulation of soil organic matter and their effects on soil quality. p. 50-53. In Mathur, S. P., and Wang, C. (ed.) Soil quality in the Canadian context- 1988 discussion papers. Tech. Bull. 1991-1E. Res. Branch, Agric. Canada, Ottawa, ON
  9. Tavant, Y., Tavant, H. and Bruckert, S. (1994) Variation du carbone orgarnicque en fontion des proprieties des sols et de l'altitude dans le Jura (France). Geoderma 61, 133-141 https://doi.org/10.1016/0016-7061(94)90015-9
  10. Baldock, J. A. and Skjemstad, J. O. (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31, 697-710 https://doi.org/10.1016/S0146-6380(00)00049-8
  11. Muneer, M. and Oades, J. M. (1989 a) The role of Ca-organic interactions in soil aggregate stability. I. Laboratory studies with $^{14}C$-glucose, $CaCO_3$, and $CaSO_4$.$2H_2O$. Aust. J. Soil Res. 27, 389-399 https://doi.org/10.1071/SR9890389
  12. Muneer, M. and Oades, J. M. (1989 b) The role of Ca-organic interactions in soil aggregate stability. II. Field studies with $^{14}C$-labelled straw, $CaCO_3$, and $CaSO_4$.$2H_2O$. Aust. J. Soil Res. 27, 401-409 https://doi.org/10.1071/SR9890401
  13. Park, M. U., Cho, I. S.,, Yoon, J. H., Kim, E. Y., Gwak, H. G., Oh, D. S., Song, K. C., Jeong, B. G., Yeon, B. Y., Lee, C. S., Somg, Y. S., Cho, H. J., Kim, Y. H., Eom, G. C., Heon, B. G., Jang, Y. S., Eom, M. H., Kim, S. H., Seo, J. S., Kueon, J. S., Harn, S. S., Ryu, C. H., Cho, K, H., Lee, D. C., Yoon, E. S., Lee, J. S. (2000) Analysis methods of soil and plant. National Institute of Agricultural Science and Technology, RDA, 89-93, 103-131
  14. Oh, W. K. (1990) Liming materials and desalinization of marine originated tidal soil. Korean J. Soil Sci. Fert. 23, 107-113

Cited by

  1. Effects of Compost and Gypsum on Soil Water Movement and Retention of a Reclaimed Tidal Land vol.47, pp.5, 2014, https://doi.org/10.7745/KJSSF.2014.47.5.340
  2. Hairy Vetch Growth-Promoting Rhizobium sp. RH84 and Application to Reclaimed Land vol.56, pp.4, 2013, https://doi.org/10.3839/jabc.2013.037