DOI QR코드

DOI QR Code

Perspectives for the Industrial Use of Bacteriocin in Dairy and Meat Industry

축산업 분야에서의 박테리오신의 산업적 이용 및 향후 전망

  • Lee, Na-Kyoung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, Joo-Yeon (Korea Livestock Products HACCP Management Institute) ;
  • Kwak, Hyung-Geun (Korea Livestock Products HACCP Management Institute) ;
  • Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • Published : 2008.03.30

Abstract

More safe and natural food was recently needed by consumers. Antimicrobials including sodium azide, penicillin, and vancomycin were used for therapeutic agents against pathogens such as Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7 in dairy and meat industry. These antimicrobials and preservatives were prohibited in stock farm and food because they were caused resistant strain and side effects. Bacteriocins are proteinaceous compounds that may present antimicrobial activity towards important food-borne pathogens and spoilage-related microflora. Therefore, bacteriocins were reported as an alternative of antimicrobials. Due to these properties, bacteriocin-producing strains or purified bacteriocins have a great potential of use in biologically based food preservation systems. Despite the growing number of articles regarding on the isolation of bacteriocinogenic strains, genetic determinants for production, purification and biochemical characterization of these inhibitory substances, there are only limited reports of successful application of bacteriocins to dairy and meats. This review describes bacteriocins related to dairy and meat products for the further use.

최근까지 박테리오신 생산균주의 분리, 분자생물학적 메커니즘, 정제, 구조 및 작용기작, 산업적인 적용 등의 논문 등이 보고되고 있다. 또한 50개국 이상에서 치즈, 통조림식품 등에서 식품보존제로서 승인되어 있다. 박테리오신의 여러 장점으로 인해 현재 추진되고 있는 축산업 분야의 HACCP의 범위인, 사육장에서부터 식품제조에 이르기까지 항생물질, 인공적인 방부제나 식품첨가물이 적게 들어가거나 첨가되지 않은 자연식품을 선호하고 있는 실정에 적합하다. 향후 축산업에서 항생제 대체방안의 하나로서 박테리오신의 사용은 확대되리라 기대된다. 경제적인 가격 경쟁력을 갖기 위해, 대량생산에 대한 연구가 이루어져야 하며, 적절한 제형으로 보다 구체적인 적용실험이 수행되어 산업화를 앞당겨야 한다.

Keywords

References

  1. Aasen, I. M., Moretro, T., Katla, T., and Axelsson, L. (2000) Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl. Microbiol. Biotechnol. 53, 159-166 https://doi.org/10.1007/s002530050003
  2. Ahn, C. (1993) Molecular genetics of bacteriocin production in lactic acid bacteria. Bioindustry 6, 12-23
  3. Alpas, H. and Bozoglu, F. (2002) Recovery of Escherichia coli O157:H7 and Salmonella in milk and cream of chicken soup from high hydrostatic pressure (HHP) and bacteriocin application upon storage. High Pressure Res. 22, 685-687 https://doi.org/10.1080/08957950212445
  4. Benkerroum, N., Ghouati, Y., Ghalfi, H., Elmejdoub, T., Roblain, D., Jacques, P., and Thonart, P. (2002) Biocontrol of Listeria monocytogenes in a model cultured milk (lben) by in situ bacteriocin production from Lactococcus lactis ssp. lactis. Int. J. Dairy Technol. 55, 145-151 https://doi.org/10.1046/j.1471-0307.2002.00053.x
  5. Benkerroum, R. and Sandine, W. E. (1988) Inhibitory action of nisin against Listeria monocytogenes. J. Dairy Sci. 71, 3237-3254 https://doi.org/10.3168/jds.S0022-0302(88)79929-4
  6. Beuchat, L. R., Clavero, M. R. S., and Jaquette, C. B. (1997) Effect of nisin and temperature on survival, growth, and enterotoxin production characteristics of psychrotrophic Bacillus cereus in beef gravy. Appl. Environ. Microbiol. 63, 1953-1958
  7. Byun, P. H., Jung, J. H., Kim, W. J., and Yoon, S. K. (2001) Effects of garlic addition on lipid oxidation of ground pork during storage. Korean J. Soc. Food Cookery Sci. 17, 117-122
  8. Cheigh, C.-I., Choi, H.-J., Park, H., Kim, S.-B., Kook, M.-C., Kim, T.-S., Hwang, J.-K., and Pyun, Y.-R. (2002) Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J. Biotechnol. 95, 225-235 https://doi.org/10.1016/S0168-1656(02)00010-X
  9. Chen, H. and Hoover, D. G. (2003) Bacteriocins and their food applications. Compr. Rev. Food Sci. F. 2, 82-100
  10. Cho, S. H., Seo, I. W., Choi, J. D., and Joo, I. S. (1990) Antimicrobial and antioxidant activity of grapefruit and seed extract on fishery products. Bull. Korean Fish Soc. 23, 289- 296
  11. Coventry, M. J., Muirhed, K., and Hickey, M. W. (1995) Partial characterisation of pediocin PO2 and comparison with nisin for biopreservation of meat products. Int. J. Food Microbiol. 26, 133-145 https://doi.org/10.1016/0168-1605(94)00102-C
  12. Daeschel, M. A. (1989) Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technol. 43, 164-167
  13. Delgado, A., Lpez, F. N. A. Brio, D., Peres, C., Fevereiro, P., and Garrido-Fernndez, A. (2007) Optimum bacteriocin production by Lactobacillus plantarum 17.2b requires absence of NaCl and apparently follows a mixed metabolite kinetics. J. Biotechnol. 130, 193-201 https://doi.org/10.1016/j.jbiotec.2007.01.041
  14. Drosinos, E. H., Mataragas, M., Nasis, P., Galiotou, M., and Metaxopoulos J. (2005) Growth and bacteriocin production kinetics of Leuconostoc mesenteroides E131. J. Appl. Microbiol. 99, 1314-1323 https://doi.org/10.1111/j.1365-2672.2005.02735.x
  15. Ghalfi, H., Benkerroum, N., Doguiet, D. D. K., Bensaid, M., and Thonart, P. (2007) Effectiveness of cell-adsorbed bacteriocin produced by Lactobacillus curvatus CWBI-B28 and selected essential oils to control Listeria monocytogenes in pork meat during cold storage. Lett. Appl. Microbiol. 44, 268-273 https://doi.org/10.1111/j.1472-765X.2006.02077.x
  16. Ha, J.-I., Hong, K.-S., Song, S.-W., Jung, S.-C., Min, Y.-S., Shin, H.-C., Lee, G.-O., Lim, K.-J., and Park, J.-M. (2003) Survey of antimicrobial agents used in livestock and fishes. Kor. J. Vet. Publ. Hlth. 27, 205-217
  17. Holck, A. L., Axelsson, L., Hhne K., and Krckel L. (1994) Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake LB674. FEMS Microbiol. Lett. 15, 143-149
  18. Houlihan, A. J., Mantovani, H. C., and Russell, J. B. (2004) Effect of pH on the activity of bovicin HC5, a bacteriocin from Streptococcus bovis HC51. FEMS Microbiol. Lett. 231, 27-32 https://doi.org/10.1016/S0378-1097(03)00922-4
  19. Hugas, M., Pags, F., Garriga, M., and Monfort, J. M. (1998) Application of bacteriocinogenic Lactobacillus sakei CTC 494 to prevent growth of Listeria in fresh and cooked meat products packed with different atmospheres. Food Microbiol. 15, 639-650 https://doi.org/10.1006/fmic.1998.0208
  20. Hugo, M. P., Edith, P. A., Carlos, R. G., Amelia F. G. S., and Isabel, G. L. (2005) Effect of extrinsic parameters on the production of bacteriocin by Lactobacillus buchneri, isolated from Mexican raw sausages. Int. J. Food Prop. 8, 69-78 https://doi.org/10.1081/JFP-200048086
  21. Ingolf, F. N. and Holo, H. (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55, 50-61 https://doi.org/10.1002/1097-0282(2000)55:1<50::AID-BIP50>3.0.CO;2-3
  22. Jacobsen, T., Budde, B. B., and Koch, A. G. (2003) Application of Leuconostoc carnosum for biopreservation of cooked meat products. J. Appl. Microbiol. 95, 242-249 https://doi.org/10.1046/j.1365-2672.2003.01970.x
  23. Joerger, R. D. (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptide and bacteriophages. Poultry Sci. 82, 640-647 https://doi.org/10.1093/ps/82.4.640
  24. Jung, M.-Y. and Paik, H.-D. (2000) Identification and partial characterization of lacticin JW3, a bacteriocin produced by Lactococcus lactis JW3 isolated from commercial swiss cheese products. Food Sci. Biotechnol. 9, 116-123
  25. Kim, H.-J., Kim, J.-H., Son, J. H., Seo, H-J., Park, S.-J., Paek, N.-S., and Kim, S.-K. (2004) Characterization of bacteriocin produced by Lactocbacillus bulgaricus. J. Microbiol. Biotechnol. 14, 503-508
  26. Kim, W. S., Hall, R. J., and Dunn, N. W. (1997) The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Appl. Microbiol. Biotechnol. 48, 449-453 https://doi.org/10.1007/s002530051078
  27. Kim, Y. M., Paik, H.-D., and Lee, D. S. (2002) Shelf-life characteristics of fresh oysters and ground beef as affected by bacteriocin-coated plastic packaging film. J. Sci. Food Agric. 82, 998-1002 https://doi.org/10.1002/jsfa.1125
  28. Kim, Y. S., Kim, M. J., Kim, P., and Kim, J. H. (2006) Cloning and production of a novel bacteriocin, lactococcin K, from Lactococcus lactis subsp. lactis MY23. Biotechnol Lett. 28, 357-362 https://doi.org/10.1007/s10529-005-5935-z
  29. Kotel'nikova, E. A. and Gelfand, M. S. (2002) Transcriptional regulation in the system of genes responsible for bacteriocin production in Streptococcus equi. Russ. J. Genet. 38, 761-765 https://doi.org/10.1023/A:1016383419938
  30. Laukov, A., Juri, P., Vasilkov, Z., and Papajov, I. (2000) Treatment of sanitary-important bacteria by bacteriocin substance V24 in cattle dung water. Lett. Appl. Microbiol. 30, 402-405 https://doi.org/10.1046/j.1472-765x.2000.00725.x
  31. Lee, J. R., Hur, S. J., Joo, S. T., and Park, G. B. (2001) The effect of chitosan supplementation on pH, shear force, moisture, and color of pork. Korean J. Food Sci. Ani. Resour. 21, 200-207
  32. Lee, S. S. Hsu, J. T., Mantovani, H. C., and Russell, J. B. (2002) The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol. Lett. 217, 51-55 https://doi.org/10.1111/j.1574-6968.2002.tb11455.x
  33. Li, C., Bai, J., Cai, Z., and Ouyang, F. (2002) Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J. Biotechnol. 93, 27-34 https://doi.org/10.1016/S0168-1656(01)00377-7
  34. Martnez, J. M., Martnez, I. M., Herranz, C., Surez,A. M., Cintas, L. M., Fernez. M. F., Rodrguez, J. M., and Hernndez, P. E. (2000) Use of genetic and immunological probes for pediocin PA-1 gene detection and quantification of bacteriocin production in Pediococcus acidilactici strains of meat origin. Food Agric. Immunol. 12, 299-310 https://doi.org/10.1080/09540100020008164
  35. Martn, M., Gutirrez, J., and Criado, R., Herranz, C., Cintas, L. M., and Hernndex, P. E. (2007) Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis. Appl. Microbiol. Biotechnol. 76, 667-675 https://doi.org/10.1007/s00253-007-1044-3
  36. Mauriello, G., Ercolini, D., La Storia, A., Casaburi, A., and Villani, F. (2004) Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. J. Appl. Microbiol. 97, 314-322 https://doi.org/10.1111/j.1365-2672.2004.02299.x
  37. Montville, T. J., Winkowski, K., and Ludescher, R. D. (1995) Models and mechanisms for bacteriocin actions and application. Int. Dairy J. 5, 797-814 https://doi.org/10.1016/0958-6946(95)00034-8
  38. Montville, T. J. and Winkowski, K. (1997) Biologicallybased preservation systems and probiotic bacteria. In: Food microbiology: fundamentals and frontiers. Doyle, M. P., Beuchat, L. R. and Montville,T.J. (eds) American Society for Microbiology Press, Washington, DC, pp 557-577
  39. Moon, G.-S., Kim, W. J., and Kim, M. H. (2002) Synergistic effects of bacteriocin-producing Pediococcus acidilactici K10 and organic acids on inhibiting Escherichia coli O157:H7 and applications in ground beef. J. Microbiol. Biotechnol. 12, 936-942
  40. Morris, S. L., Walsh, R. C., and Hansen, J. N. (1984) Identification and characterization of some bactericidal membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. J. Biol. Chem. 201, 581-585
  41. Nes, I. F. and Holo, H. (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55, 50-61 https://doi.org/10.1002/1097-0282(2000)55:1<50::AID-BIP50>3.0.CO;2-3
  42. Oh, S. J., Heo, H. J., Park, D. J., Kim, S. H., Lee, S. J., and Imm, J. Y. (2006) Effect of encapsulated bacteriocin on acid production and growth of starter cultures in yoghurt. Food Sci. Biotechnol. 15, 903-907
  43. Paik, H.-D., Kim, H.-J., Nam, K.-J., Kim, C.-J., Lee, S.-E., and Lee, D.-S. (2006) Effect of nisin on the storage of sous vide processed Korean seasoned beef. Food Control 17, 994-1000 https://doi.org/10.1016/j.foodcont.2005.07.005
  44. Park, H. J., Lee, N.-K., Kim, K.-T., Ha, J.-U., Lee, D. S., and Paik, H.-D. (2003) Inhibition of Listeria monocytogenes in vacuum or modified atmosphere-packed ground beef by lactococcal bacteriocins. Nutraceut. Food 8, 196-199 https://doi.org/10.3746/jfn.2003.8.2.196
  45. Rodrgguez, E., Arqus, J. L., Gaya, P., Nuez, M., and Medina, M. (2001) Control of Listeria monocytogenes by bacteriocinproducing lactic acid bacteria by colony hybridization in semi-hard raw milk cheese. J. Dairy Res. 68, 131-137 https://doi.org/10.1017/S0022029900004660
  46. Ross, R. P., Galvin, M., McAuliffe, O., Morgan, S. M., Ryan, M. P., Twomey, D. P., Meaney, W. J., and Hill, C. (1999) Developing applications for lactococcal bacteriocins. Anton. van Leeuw. 76, 337-346 https://doi.org/10.1023/A:1002069416067
  47. Ryan, M. P., Meaney, W. J., Ross, R. P., and Hill, C. (1998) Evaluation of lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogen. Appl. Environ. Microbiol. 64, 2287-2290
  48. Santos Nascimento, J., Santos, K. R. N., Gentilini, E., Sordelli, D., and Bastos, M. C. F. (2002) Phenotypic and genetic characterisation of bacteriocin-producing strains of Staphylococcus aureus involved in bovine mastitis. Vet. Microbiol. 85, 133-144 https://doi.org/10.1016/S0378-1135(01)00476-X
  49. Schillinger, U., Geisen, R., and Holzapfel, W. H. (1996) Potential of antagonisitic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci. Technol. 7, 158-222 https://doi.org/10.1016/0924-2244(96)81256-8
  50. Stoyanova, L. G. and Levina, N. A. (2006) Components of fermentation medium regulate bacteriocin synthesis by the recombinant strain Lactococcus lactis subsp. lactis F-116. Microbiology 75, 286-291 https://doi.org/10.1134/S0026261706030088
  51. Tkel, C, Avrolu, M. D., S¸ imek, o., and Akwlik, M. (2007) Isolation and partial characterization of novel bacteriocin produced by Lactococcus lactis ssp. lactis MC38. J. Food Safety 27, 17-29
  52. Twomey, D. P., Wheelock, A. I., Flynn, J., Meaney, W. J., Hill, C., and Ross, R. P. (2000) Protection against Staphylococcus aureus mastitis in dairy cow using a bismuth-based teat seal containing the bacteriocin, lacticin 3147. J. Dairy Sci. 83, 1981-1988 https://doi.org/10.3168/jds.S0022-0302(00)75075-2
  53. Verellen, T. J., Bruggeman, G., Van Reenen, C. A., Dicks, L. M. T., and Vamdamme, E. J. (1998) Fermentation optimization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum 423. J. Ferment. Bioeng. 86, 174-179 https://doi.org/10.1016/S0922-338X(98)80057-3
  54. Villani, F., Aponte, M., Blaitta, G., Mauriello, G., Pepe, O., and Moschetti, G. (2001) Detection and characterization of a bacteriocin, garviecin L1-5, produced by Lactococcus garvieae isolated from raw cow's milk. J. Appl. Microbiol. 90, 430-439 https://doi.org/10.1046/j.1365-2672.2001.01261.x
  55. Wirawan, R. E., Klesse, N. A., Jack, R. W., and Tagg, J. R. (2006) Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl. Environ. Microbiol. 72, 1148-1156 https://doi.org/10.1128/AEM.72.2.1148-1156.2006
  56. Wong, J. W., Hashimoto, K., and Shibamoto, T. (1995) Antioxidant activities of rosemary and sage extract and vitamin E in a model meat system. J. Agric. Food Chem. 43, 2707-2712 https://doi.org/10.1021/jf00058a029
  57. Xavier, B. M. and Russell, J. B. (2006) Bacterial competition between a bacteriocin-producing and a bacteriocin-negative strain of Streptococcus bovisin batch and continuous culture. FEMS Microbiol. Ecol. 58, 317-322 https://doi.org/10.1111/j.1574-6941.2006.00160.x
  58. Yoon, Y. C., Park, H.-J., Han, J.-J., Chung, C.-I., and Paik, H.-D. (2006) Control of Listeria monocytogenes in milk by lacticin JW3, a bacteriocin produced by Lactococcus lactis JW3 isolated from cheese. Milk Sci. Int. 11, 6-10
  59. Yousef, A. E., Luchansky, J. B., Degnan, A. J., and Doyle, M. P. (1991) Behavior of Listeria monocytogens in wiener exudates in the presence of Pediococcus acidilactici H or pediocin AcH during storage at 4 or $25^{\circ}C$. Appl. Environ. Microbiol. 57, 1461-1467
  60. 이나경, 김성미, 백현동 (2001) 한국전통발효식품에 관련 된 박테리오신의 연구동향. 미생물과 산업 pp. 23-28

Cited by

  1. Study on Processing Quality of Different Parts of Pork and Beef vol.32, pp.2, 2016, https://doi.org/10.9724/kfcs.2016.32.2.157
  2. Purification and Characterization of Lacticin NK34 Produced by Lactococcus lactis NK34 against Bovine Mastitis vol.28, pp.4, 2008, https://doi.org/10.5851/kosfa.2008.28.4.457