The Effect of Water Temperature on Proliferation of Stephanodiscus sp. in vitro from the Nakdong River, South Korea

  • Published : 2008.03.31

Abstract

To understand the effect of water temperature on growth pattern of Stephanodiscus sp., we weekly or biweekly investigated in the lower part of the Nakdong River from 1994 to 2006 and performed a laboratory experiment. Stephanodiscus was the most dominant species among phytoplankton in winter when low flow persisted and the high abundances of the species were maintained from December to February. Three strains of Stephanodiscus sp. were isolated for the in vitro experiment from the Nakdong River in January 2005. Over the water temperature range of $4^{\circ}C$ to $20^{\circ}C$, the growth patterns of Stephanodiscus sp. were different in the short-term batch culture. The maximum cell density of Stephanodiscus sp. was observed at approximately $5^{\circ}C$ in the river systems, but the optimum water temperature of Stephanodiscus sp. was $10^{\circ}C$ for the growth in the laboratory experiment. However, the proliferation of Stephanodiscus sp. was related to low water temperature in the Nakdong River.

Keywords

References

  1. Ahlgren, G. 1987. Temperature functions in biology and their application to algal growth constants. Oikos 49: 177-190 https://doi.org/10.2307/3566025
  2. Cho, K.J., J.K. Shin, S.K. Kwak and O.H. Lee. 1998. Diatom genus Stephanodiscus as eutrophication indicator for water quality assessment. Korean J. Environ. Biol. 31: 204-210
  3. Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. Fish, Bull. 70: 1063-1085
  4. Fogg, G.E. and B. Thake. 1987. Algal cultures and phytoplankton ecology. The University of Wisconsin, London
  5. Guillard, R.R.L. 1973. Methods for microflagellates and nanoplankton. In: Stein, J.R. (eds.) Handbook of phycological methods, culture methods and growth measurements. Cambridge University Press, New York, p. 69-85
  6. Ha, K., H.W. Kim and G.J. Joo. 1998. The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea. Hydrobiologia 369/370: 217-227 https://doi.org/10.1023/A:1017067809089
  7. Ha, K. 1999. Phytoplankton community dynamics and Microcystis bloom development in a hypertrophic river (Nakdong River, Korea). PhD dissertation. Pusan national University, Busan
  8. Ha, K., M.H. Jang and G.J. Joo. 2002. Spatial and temporal dynamics of phytoplankton communities along a regulated river system, the Nakdong River, Korea. Hydrobiologia 470: 235-245 https://doi.org/10.1023/A:1015610900467
  9. Han, M.S., H.R. Lee, S.S. Hong, Y.O. Kim, K. Lee, Y. K. Choi, S. Kim and K.I. Yoo. 2002. Ecological studies on Togyo reservoir system in Chulwon, Korea. V. Seasonal changes of size-fractionated standing crops and chlorophyll a of phytoplankton in Kyungan Stream of Pal'tang river-reservoir systems and Togyo Reservoir, Korea. Korean J. Environ. Biol. 20: 91-99
  10. Hong, S.S., S.W. Bang and M.S. Han. 2002. Effects of rainfall on the hydrological conditions and phytoplankton community structure in the riverine zone of the Paltang Reservoir, Korea. J. Freshwater Ecol. 17: 507-519 https://doi.org/10.1080/02705060.2002.9663929
  11. Jeong, K.S., G.J. Joo, H.W. Kim, K. Ha and F. Recknagel. 2001. Prediction and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network. Ecol. Model. 146: 115-129 https://doi.org/10.1016/S0304-3800(01)00300-3
  12. Jeong, K.S., F. Recknagel and G.J. Joo. 2003. Prediction and elucidation of population dynamics of a blue-green alga (Microcystis aeruginosa) and diatom (Stephanodiscus hantzschii) in the Nakdong River-Reservoir System (South Korea) by artificial neural networks. In: Ecological Informatics (Recknagel, F. eds.), Springer, Berlin, p. 195-213
  13. Joo, G.J., H.W. Kim, H. Kyong and J.K. Kim. 1997. Long-term trend of the eutrophication of the lower Nakdong River. Korean J. Limnol. 30: 472-480
  14. Kang, Y.H., J.D. Kim, B.H. Kim, D.S. Kong and M.S. Han. 2005. Isolation and characterization of a bioagent antagonistic to diatom, Stephanodiscus hantzschii. J. Appl. Microbiol. 98: 1030-1038 https://doi.org/10.1111/j.1365-2672.2005.02533.x
  15. Kim, D.K., K.S. Jeong, P.A. Whigham and G.J. Joo. 2007. Winter diatom blooms in a regulated river in South Korea: explanations based on evolutionary computation. Freshwater Biol. 52: 2021-2041 https://doi.org/10.1111/j.1365-2427.2007.01804.x
  16. Kim, H.W. 1999. Water quality, plankton community dynamics, and trophic regulation in the microbial food web by zooplankton in a hypertrophic river (Nakdong River, Korea). Ph. D. dissertation, Pusan National University, Busan
  17. Kim, H.W. and G.J. Joo. 2000. The longitudinal distribution and community dynamics of zooplankton in a regulated large river: a case study of the Nakdong River (Korea). Hydrobiologia 438: 171-184 https://doi.org/10.1023/A:1004185216043
  18. Kim, H.W., S.J. Hwang and G.J. Joo. 2000. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J. Plankton Res. 22(8): 1559-1577 https://doi.org/10.1093/plankt/22.8.1559
  19. Kim, H.W., K.H. Chang and G.J. Joo. 2005. Characteristics and inter-annual variability of zooplankton dynamics in the middle part of the river (Nakdong River). Korean J. Limnol. 38(3): 412-419
  20. Lee, W.S. and M.S. Han. 2004. Community structure of plankton in eutrophic water systems with different residence time. Korean J. Limnol. 37(3): 263-271
  21. Lim, Y.S., W.S. Song, J.S. Cho, H.J. Lee and J.S. Heo. 2000. The effect of algae on coagulation and filtration of water treatment process. Korean J. Environ. Agric. 19: 13-19
  22. Marker, A.F.H. and G.D. Collett. 1997. Spatial and temporal characteristics of algae in the River Great Ouse. I. Phytoplankton. Regulated Rivers: Research & Management 13: 219-233 https://doi.org/10.1002/(SICI)1099-1646(199705)13:3<219::AID-RRR450>3.0.CO;2-M
  23. McAlice, B.J. 1971. Phytoplankton sampling with the Sedgwick-Rafter cell. Limnol. Oceanogr. 16(1): 19-28 https://doi.org/10.4319/lo.1971.16.1.0019
  24. Mitrovic, S.M., P.R. Hawkins, L.C. Bowling, R.T. Buckney and D.H.M. Cheng. 1999. Low nitrate concentrations in a tidally mixed river allow replacement of green algae by the cyanobacteria Microcystis. Verhandlungen der Internationale Vereinigung fur Theoretische und Angewandte Limnologie 27: 924-929
  25. O'Brien, W.J. 1974. The dynamics of nutrient limitation of phytoplankton algae: a model reconsidered. Ecology 55: 135-141 https://doi.org/10.2307/1934626
  26. Paerl, H.W. 1987. Dynamics of blue-green algal (Microcystis aeruginosa) blooms in the Lower Neuse River, North Carolina: causative factors and potential controls. Water Resources Research Institute of the University of North 14 Carolina, UNCWRRI-87-229
  27. Rose, M. and D. Balbi. 1997. Rivers Nene and Great Ouse Eutrophication Studies: Final Report. Environment Agency, Peterborough, UK.
  28. Sorokin, Y.I., P.Y. Sorokin and D. Ravagnan. 1996. On the bloom of toxic dinoflagellate Gonyaulax tamarensis lebour in the lagoons of the Adriatic Sea. Zh. Obshch. Biol. 57(3): 381-387
  29. Throndsen, J. 1969. A simple micropipette for use with the Wild M40 and the Zeiss plankton microscopes. J. Cons. CIEM. 32(3): 430-432 https://doi.org/10.1093/icesjms/32.3.430
  30. Utermohl, H. 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitt. int. Ver. theor. angew. Limnol. 9: 1-38
  31. Van Donk, E. and S.S. Kilham. 1990. Temperature effects on cilicon- and phosphorus-limited growth and competitive interactions among three diatoms. J. Phycol. 26: 40-50 https://doi.org/10.1111/j.0022-3646.1990.00040.x
  32. Wetzel, R.G. and G.E. Likens. 1991. Limnological analysis. New York, Springer-Verlag