Ecotoxicological Response of Offspring from Tigriopus japonicus s.l. Parents Exposure to 4-nonylphenol

4-nonylphenol에 노출된 암컷 저서성 요각류 Tigriopus japonicus s.l.에서 부화한 자손의 생태독성 반응

  • Bang, Hyun-Woo (Division of Marine Technology, Chonnam National University) ;
  • Lee, Won-Choel (Department of Life Science, Hanyang University) ;
  • Kwak, Inn-Sil (Division of Marine Technology, Chonnam National University)
  • Published : 2008.03.31

Abstract

The aim of this research was to detect and observe delivering generation effects from $F_0$ generation exposed to 4-nonylphenol 4NP) to $F_1$ generation on Tigriopus japonicus. The nauplius survival rate of $F_1$ from $F_0$ exposed to low 4NP concentration was significantly lower than other concentrations. Among the developmental process, copepodite first emergence day (CE) and adult male first emergence day (ME) on $F_1$ were accelerated relatively high concentration conditions. The sex ratio of $F_1$ was different between control group and treatment groups for 1, 10 and $30{\mu}g\;L^{-1}$ 4NP. The fecundity of $F_1$ was not significantly affected (except, $0.1{\mu}g\;L^{-1}$ 4NP). When 4NP concentrations were increased, first brooding day (FB) of F 1 was generally delayed. The length, width, and biomass of $F_1$ adult female were smaller than control group. In addition, the width and biomass of adult male were narrower or smaller than control group.

본 연구에서는 4-nonlyphenol에 노출된 부모 세대 Tigriopus japonicus s.j.에서 태어난 그 자손 세대의 성장 과정과 외형의 변화를 살펴보았다. 4NP노출된 암컷에서 태어난 $F_1$세대 nauplius 유생은 저농도에서 낮은 생존율을 보였으며, 성장 속도를 반영한 copepodite 유생 발생일과 성숙 수컷의 최초 출현일은 고농도에서 빠른 성장을 보였다. 성비는 $0.1{\mu}g\;L^{-1}$$100{\mu}g\;L^{-1}$에서는 대조군과 유의적인 차이론 보이지 않았으나, $1{\mu}g\;L^{-1}$$10{\mu}g\;L^{-1}$에서는 수컷의 비율이 매우 높았다. 포란율의 경우 $0.1{\mu}g\;L^{-1}$에서 매우 낮은 포란율을 보였으나, 그 이상 농도에서는 100% 포란하였다. 암컷의 최초 포란일은 모든 농도에서 대조군보다 지연되었으며, 농도가 높아질수록 느려지는 경향을 보였다. 4NP 처리군에서 발생한 $F_1$세대 암컷 성체의 체장, 폭 그리고 생물량은 모든 농도에서 대조군보다 짧게 나타났다. 성숙 수컷의 경우 체장은 대조군과 큰 차이가 없었으나 폭과 생물량은 모든 농도에서 대조군보다 짧은 것으로 나타났다.

Keywords

References

  1. Ahel, M., T. Conrad and W. Giger. 1987. Persistent organic chemicals in sewage effluents-3. Determinations of nonylphenoxy carboxylic acids by high-resolution gas chromatography/mass spectrometry and high performance liquid chromatography, Environ. Sci. Technol. 21: 697-703 https://doi.org/10.1021/es00161a011
  2. Alvarez, M.M.S. and D.V. Ellis. 1990. Widespread neogastropod imposex in the Northeast Pacific: Implications for TBT contamination surveys. Mar. Pollut. Bull. 21: 244-247 https://doi.org/10.1016/0025-326X(90)90343-7
  3. Andersen, H.R., B. Halling-Sorensen and K.O. Kusk. 1999. A parameter for detecting estrogenic exposure in the copepod Acartia tonsa. Ecotoxicol. Environ. Saf. 44: 56-61 https://doi.org/10.1006/eesa.1999.1800
  4. ASTM. 2004. Standard guide for conducting renewal microplate- based life-cycle toxicity tests with a marine meiobenthic copepod. American Society for Testing and Materials, Philadelphia, PA, ASTM Standard No E2317- E2324
  5. Baldwin, W.S., D.L. Milam and G.A. LeBlalc. 1995. Phygiological and biochemical perturbations in Daphnia magna following exposure to the model environment estrogen disthylstibestrol. Environ. Toxicol. Chem. 14: 945-952 https://doi.org/10.1897/1552-8618(1995)14[945:PABPID]2.0.CO;2
  6. Baldwin, W.S., S.E. Graham, D. Shea and G.A. LeBlanc. 1997. Metabolic androgenization of female Daphnia magna by the xenoestrogen 4-nonylphenol. Environ. Toxicol. Chem. 16: 1905-1911 https://doi.org/10.1897/1551-5028(1997)016<1905:MAOFDM>2.3.CO;2
  7. Barata, C., M. Medina, T. Telfer and D.J. Baird. 2002. Determining demographic effects of cypermethrin in the marine copepod Acartia tonsa: Stage-specific short tests versus life-table tests. Arch. Environ. Contam. Toxicol. 43: 373-378 https://doi.org/10.1007/s00244-002-1268-2
  8. Barata, C., C. Porte and D.J. Baird. 2004. Experimental designs to assess endocrine disrupting effects in inver-tebrates-A review. Ecotoxicology. 13: 511-517 https://doi.org/10.1023/B:ECTX.0000037188.09072.de
  9. Barne, R.D. 1980. Invertebrate zoology. Philadelphia PA: W.S. Sanunders
  10. Bechmann, R.K. 1999. Effect of the endocrine disrupter nonylphenol on the marine copepod Tisbe battagliai. Sci. Total Environ. 233: 33-46 https://doi.org/10.1016/S0048-9697(99)00177-1
  11. Bejarano, A.C. and G.T. Chandler. 2003. Reproductive and developmental effects of atrazine on the estuarine meiobenthic copepod Amphiascus tenuiremis. Environ. Toxicol. Chem. 22: 3009-3016 https://doi.org/10.1897/03-40
  12. Block, D.S., A.C. Bejarano and G.T. Chandler. 2003. Ecdysteroid concentrations through various life-stages of the meiobenthic harpacticoid copepod, Amphiascus tenuiremis and the benthic estuarine amphipod, Leptocheirus plumulosus. Gen. Comp. Endocrinol. 132: 151-160 https://doi.org/10.1016/S0016-6480(03)00062-5
  13. Cary, T.L., G.T. Chandler, D.C. Volz, S.S. Walse and L. Ferry. 2004. Phenylpyrazole insecticide fipronil induces male infertility in the estuarine meiobenthic crustacean Amphiascus tenuiremis. Environ. Sci. Technol. 38: 522-528 https://doi.org/10.1021/es034494m
  14. Chandler, G.T. and A.S. Green. 2001. Developmental stage -specific life-cycle bioassay for assessment of sedimentassociated toxicant effects on benthic copepod production. Environ. Toxicol. Chem. 20: 171-178 https://doi.org/10.1897/1551-5028(2001)020<0171:DSSLCB>2.0.CO;2
  15. Chandler, G.T., T.L. Cary, D.C. Volz, S.S. Spencer, J.L. Ferry and K. losterhaus. 2004. Fipronil effects on estuarine copepod(Amphiacus tenuiremis) development, fertility, and reproduction: a rapid life-cycle assay in 96- well microplate format. Environ. Toxicol. Chem. 23: 117-124 https://doi.org/10.1897/03-124
  16. Chang, E.S., M.J. Bruce and S.L. Tamone. 1993. Regulation of crustacean molting: a multi-hormonal system. Am. Zool. 33: 324-329 https://doi.org/10.1093/icb/33.3.324
  17. Colburn, T., F.S. vom Saal and A.M. Soto. 1993. Developmental effect of endocrine-disrupting chemicals in wildlife and human. Environ. Health Perspectives. 101: 378-384 https://doi.org/10.2307/3431890
  18. Crisp, T.M., E.D. Clegg, R.L. Cooper, D.G. Anderson, K.P. Baetcke, J.L. Hoffmann, M.S. Morrow, D.J. Rodier, J.E. Schaeffer, L.W. Touart, M.G. Zeeman, Y.M. Patel and W.P. Wood. 1997. Special report on environmental endocrine disruption: an effects assessment and analysis. Washington DC: USEPA. EPA/630/R-96/012
  19. DeFur, P.L., M. Crane, C. Ingersoll and L. Tattersfield. 1999. Endocrine disruption in Invertebrates: Endocrinology, Testingand Assesment. Pensacola, Fla.: Society of Environmental Toxicology and Chemistry
  20. DeFur, P.L. 2004. Use and role of invertebrate models in endocrine disrupter research and testing. ILAR J. 45(4): 484-493 https://doi.org/10.1093/ilar.45.4.484
  21. Fingerman, M. 1987. The endocrine mechanisms of crustaceans. J. Crust. Biol. 7: 1-24 https://doi.org/10.2307/1548622
  22. Fingerman, M. 1997. Crustacean endocrinology: a retrospective, prospective, and introspective analysis. Physiol. Zool. 70: 257-269 https://doi.org/10.1086/639593
  23. Fox, G.A. 1992. Epidemiological and pathobiological evidence of contaminant-induced alterations in sexual development in free-living wildlife, In: Colborn, T. and C. Clement (eds.). Chemically Induced Alterations in Sexual and Functional Development. The Wildlife/ Human Connection. Princeton Scientific Pub. Co., Princeton, NJ. p. 147-158
  24. Giger, W., P.H. Brunner and D. Schaffner. 1984. 4-Nonylphenol in sewage sludge: Accumulation of toxic metabolites from nonionic surfactants, Science 225: 623-625 https://doi.org/10.1126/science.6740328
  25. Green, A.S., G.T. Chandler and W.W. Piegorsch. 1996. Lifestage- specific toxicity of sediment-associated chlorpyrifos to a marine, infaunal copepod. Environ. Toxicol. Chem. 15: 1182-1188 https://doi.org/10.1897/1551-5028(1996)015<1182:LSSTOS>2.3.CO;2
  26. Hasegawa, Y., E. Hirose and Y. Katakura. 1993. Hormonal control of sexual differentiation and reproduction in Crustacea. Am. Zool. 33: 403-411 https://doi.org/10.1093/icb/33.3.403
  27. Higgins, R.P. and H. Thiel. 1988. Introduction to the study of meiofauna. Smithsonian Institution Press
  28. ISO. 1997. Water quality-determination of acute lethal toxicity to marine copepods (Copepoda, Crustacea). Draft International Standard ISO/DIS 14669. Geneve, Switzerland
  29. Ito, T. 1970. The biology of the harpacticoid copepod Tigriopus japonicus Mori. J Fac Sci. Hokkaido Univ. 17: 474-500
  30. Kusk, K.O. and L. Wollenberger. 1999. Fully defined saltwater medium for cultivation of and toxicity testing with marine copepod Acartia tonsa. Environ. Toxicol. Chem. 18: 1564-1567 https://doi.org/10.1897/1551-5028(1999)018<1564:FDSMFC>2.3.CO;2
  31. Kusk, K.O. and L. Wollenberger. 2007. Towards an internationally harmonized test method for reproductive and developmental effects of endocrine disrupters in marine copepods. Ecotoxicology. 16(1): 183-195 https://doi.org/10.1007/s10646-006-0112-2
  32. Kwak, I.S. and W. Lee. 2004a. Changes in Proteome following exposure to Di (2-ethylhexyl) Phthalate in Chironomus riparius (Diptera: Chironomidae). Korean J. Environ. Biol. 22(4): 532-536
  33. Kwak, I.S. and W. Lee. 2004b. Detecting points for ecological disruptions and developmental delay exposure to DEHP in Chironomus riparius (Diptera: Chironomidae). Korean J. Environ. Biol. 22(2): 321-328
  34. Laufer, H, D. Borst, F.C. Baker, C. Carrasco, M. Sinkus, C.C. Reuter, L.W. Tsai and D.A. Schooley. 1987. Identification of a juvenile hormone-like compound in a crustacean. Science. 235: 202-205 https://doi.org/10.1126/science.235.4785.202
  35. Laufer, H. and D.W. Borst. 1988. Juvenile hormone in Crustacea. In: Endocrinology of Selected Invertebrate Types. H Laufer and RGH Downer, eds. Alan R. Liss, New York, NY, USA, p. 305-313
  36. LeBlanc, G.A. and L.J. Bain. 1997. Chronic toxicity of environmental contaminants: sentinels and biomarkers. Environ. Health Perspect. 105: 65-80 https://doi.org/10.2307/3433398
  37. LeBlanc, G.A. 2007. Crustacean endocrine toxicology: a review. Ecotoxicology. 16: 61-81 https://doi.org/10.1007/s10646-006-0115-z
  38. Marcial, H.S., A. Hagiwara and T.W. Snell. 2003. Estrogenic compounds affect development of harpacticoid copepod Tigriopus japonicus. Environ. Toxicol. Chem. 22(12): 3025-3030 https://doi.org/10.1897/02-622
  39. Oetken, M., J. Bachmann, U. Schulte-Oehlmann and J. Oehlmann. 2004. Evidence for endocrine disruption in invertebrates. Int. Rev. Cyto. 236: 1-43 https://doi.org/10.1016/S0074-7696(04)36001-8
  40. OECD. 2005. OECD Draft Guidelines for testing of chemiOECD. 2005. OECD Draft Guidelines for testing of chemicals. Proposal for a new guideline. Harpacticoid copepod development and reproduction test. Organisation for Economic Cooperation and Development, Paris, France
  41. Pounds, N.A., T.H. Hutchinson, T.D. Williams, P. Whiting and L. Dinan. 2002. Assessment of putative endocrine disrupters in an in vivo crustacean assay and an in vitro insect assay. Mar. Environ. Res. 54: 709-713 https://doi.org/10.1016/S0141-1136(02)00113-7
  42. Verslycke, T., A. Ghekiere, S. Raimondo and C. Janssen. 2007. Mysid crustaceans as standard models for the screening and testing of endocrine-disrupting chemicals. Ecotoxicology. 16: 205-219 https://doi.org/10.1007/s10646-006-0122-0
  43. WGBEC. 2002. Report of the Working Group on the Biological Effects of Contaminants. ICES CM 2002/E:02 Ref.: ACME
  44. Yoon, S.J., G.S. Park, J.H. Oh and S.Y. Park. 2006. Marine ecotoxicological assessment using the nauplius of marine harpacticoid copepod Tigriopus japonicus. J. Korean Soc. Environ. Eng. 9(3): 160-167