Exploring the Factors Influencing the Understanding of the Nature of Science through Authentic Open Inquiries

개방적 참탐구 활동에서 학생들의 과학의 본성에 대한 이해에 영향을 미치는 요인 탐색

  • Published : 2008.10.30

Abstract

The purpose of this study is to search for the factors that influence students' understanding of the nature of science through the experience of the cognitive processes of authentic open inquiries. The freshmen of a science high school practiced authentic open inquiries reflecting epistemological characteristics of authentic science. The case study was conducted with four focus students who were successful or unsuccessful at learning the nature of science during the authentic open inquiry activity. Questions that the focus students asked during the inquiries as well as students' answers to pre- and post-VNOS (C type) were analysed, and then elaborated in the semi-structured interview. The findings suggest that open inquiry activities provide the inquiry contexts that help science high school students to understand the nature of science, and that the characteristics of students' cognition influence the understanding of the nature of science. For instance, designing experiments with their own research questions had an influence on the students' understanding about the scientific methods and the diversity of research types, and drawing conclusions from their own data made students experience scientific reasoning. In addition, the experience of collecting anomalous data helped students to understand the role of inferences in generating scientific knowledge and the creative nature of scientific knowledge. In this inquiry context, the reflective thinking that came from proactive discussion among students, made students think about the validity of the designing experiments and interpreting data, and helped them to understand the uncertain nature of reasoning and the diverse nature of scientific methods. Moreover, divergent thinking linked to analogical thinking helped students to understand the creative nature of science.

이 연구에서는 학생들이 개방적 참탐구 활동에서 참과학의 인지과정을 경험함에 따라 과학의 본성에 대한 이해에 영향을 미치는 요인을 알아보고자 하였다. 과학고등학교 1학년 학생들에게 인식론적으로 참과학의 특성을 반영하는 개방적 참탐구 활동을 수행하도록 하고, 이들 학생들 가운데 과학의 본성에 대한 학습이 이루어지거나 실패한 4명의 학생들을 선정하여 사례연구를 실시하였다. 초점 학생들이 탐구를 수행하면서 제기한 질문들과 사전 사후 과학의 본성 검사지(VNOS-C형) 답변을 분석하고 반구조화된 면담을 통해 답변을 정교화할 수 있는 기회를 제공하였다. 그 결과 개방적 참탐구 활동은 학생들에게 과학의 본성에 대한 이해를 돕는 탐구 상황을 제공한다는 것과 학생들의 인지적 특성이 과학의 본성에 대한 이해에 영향을 미치는 것을 발견하였다. 학생들에게 실험을 설계하고 수행하도록 함으로써 과학적 방법과 연구의 다양한 형태에 대해 이해하게 되었고, 정해진 답이 없는 실험에서 얻어진 데이터로부터 결론을 도출해내는 과정에서 과학의 추론적 특성을 경험하는 것을 확인하였다. 또한 변칙데이터를 경험하게 됨으로써 과학지식의 형성에서 추론의 역할과 창의성을 이해하는데 도움이 되었다. 이러한 탐구 상황에서는 동료들과 논의를 많이 하게 되는데 이때 반성적 사고 특성을 가진 학생은 실험 설계 및 데이터 해석에서의 타당성에 대해 생각하게 됨으로써 추론의 불확실성, 이론의존성에 대한 이해로 발전하였다. 또한 확산적인 사고 특성을 가진 학생은 유추적인 사고로 연결되어 과학의 창의성을 이해하는 데에 도움이 되는 것을 확인하였다.

Keywords

References

  1. 김미경, 김희백 (2007). 고등학교 생물 교과의 개방 적 참탐구 활동 프로그램 개발 및 적용. 한국생물교육학회지, 35(4), 521-535
  2. 박종원 (2004). 과학적 창의성 모델의 제안 - 인지 적 측면을 중심으로. 한국과학교육학회지, 24(2), 375-386
  3. American Association for the Advancement of Science (AAAS) (1993). Benchmarks for science literacy. New York: Oxford University Press
  4. Abd-El-Khalick, F., Bell, R. L. & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82(4), 417-436 https://doi.org/10.1002/(SICI)1098-237X(199807)82:4<417::AID-SCE1>3.0.CO;2-E
  5. Abd-El-Khalick, F. & Lederman, N. G. (2000). Improving science teachers' conceptions of the nature of science: A critical view of the literature. International Journal of Science Education, 22(7), 665-701 https://doi.org/10.1080/09500690050044044
  6. Akerson, V. L., Abd-El-Khalick, F. & Lederman, N. G. (2000). Influence of a reflective explicit activity-based approach on elementary teachers' conception of nature of science. Journal of Research in Science Teaching, 37(4), 295-317 https://doi.org/10.1002/(SICI)1098-2736(200004)37:4<295::AID-TEA2>3.0.CO;2-2
  7. Akerson, V. L. & Hanuscin, D. L. (2007). Teaching nature of science through inquiry: Results of a 3-year professional development program. Journal of Research in Science Teaching, 44(5), 653-680 https://doi.org/10.1002/tea.20159
  8. Barron, B., Schwartz, D., Vye, N., Moore, A., Petrosino, A., Zech, L., Bransford, D., & The Cognition and technology Group at Vanderbilt. (1998). Doing with understanding: Lessons from research on problem-and project-based learning. The Journal of The Learning Science, 7(3&4), 271-311 https://doi.org/10.1207/s15327809jls0703&4_2
  9. Bell, R., Blair, L. M., Crawford, N. A. & Lederman, N. G. (2003). Just do it? Impact of a science apprenticeship program on high school students' understandings of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40(5), 487-507 https://doi.org/10.1002/tea.10086
  10. Chin, C., Brown, D. E. & Bruce, B. C. (2002). Student-generating questions: A meaningful aspect of learning in science. International Journal of Science Education, 24(5), 521-549 https://doi.org/10.1080/09500690110095249
  11. Chin, C. & Chia, L. (2006). Problem-based learning: Using ill-structured problems in biology project work. Science Education, 90(1), 44-67 https://doi.org/10.1002/sce.20097
  12. Chinn, C. A. & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175-218 https://doi.org/10.1002/sce.10001
  13. Dunbar, K. (1993). Concept discovery in scientific domain. Cognitive Science, 17(3), 397-434 https://doi.org/10.1207/s15516709cog1703_3
  14. Griffith, A. K. & Barry, M. (1993) High school students' view about the nature of science. School Science and Mathematics, 93(1), 35-37 https://doi.org/10.1111/j.1949-8594.1993.tb12189.x
  15. Hodson, D. (1988). Toward a philosophically more valid science curriculum. Science Education, 72(1), 19-40 https://doi.org/10.1002/sce.3730720103
  16. Hofstein, A., Navon, O., Kipnis, M. & Mamlok- Naaman, R. (2005). Developing students' ability to ask more and better questions resulting from inquiry-type chemistry laboratories. Journal of Research in Science Teaching, 42(7), 791-806 https://doi.org/10.1002/tea.20072
  17. Khishfe, R. & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction of sixth grader's views of nature of science. Journal of Research in Science Teaching, 39(7), 551-578 https://doi.org/10.1002/tea.10036
  18. Khishfe, R. & Lederman, N. (2006). Teaching nature of science within a controversial topic: Integrated versus nonintegrated. Journal of Research in Science Teaching, 43(4), 395-418 https://doi.org/10.1002/tea.20137
  19. Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research, Journal of Research in Science Teaching, 29(4), 331-359 https://doi.org/10.1002/tea.3660290404
  20. Lederman, N. G. (1999). Teacher's understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship. Journal of Research in Science Teaching, 36(8), 916-929 https://doi.org/10.1002/(SICI)1098-2736(199910)36:8<916::AID-TEA2>3.0.CO;2-A
  21. Lederman, N. G., Adb-El-Khalick, F., Bell, R. L. & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521 https://doi.org/10.1002/tea.10034
  22. Lederman, N. G. & O'malley, M. (1990). Students' perceptions of tentativeness in science: Development, use, and sources of change. Science Education, 74(2), 225-239 https://doi.org/10.1002/sce.3730740207
  23. McComas, W. F., Clough, M. P., & Almazroa, H. (1998). The role and character of the nature of science in science education. In W. McComas (Ed.), The nature of science education (pp. 3-39). Los Angeles: Kluwer Academic Publishers
  24. Merriam, S. B. (2005). 정성연구방법론과 사례연구 (강윤수 등 역). 서울: 교우사 (원저 1998 출판)
  25. Meichtry, Y. J. (1992). Influencing student understanding of the nature of science: Data from a Case of Curriculum Development. Journal of Research in Science Teaching, 29(4), 389-407 https://doi.org/10.1002/tea.3660290407
  26. National Research Council (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press
  27. Patton, M. Q. (1990). Designing qualitative studies. Qualitative evaluation and research methods. 2nd ed (pp. 145-198). Newbury Park, CA: SAGE
  28. Roychoudhury, A. & Roth, W. (1996). Interactions in an open-inquiry physics laboratory. International Journal of Science Education, 18(4), 423-445 https://doi.org/10.1080/0950069960180403
  29. Sandoval, W. A. (2005). Understanding students' practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634-656 https://doi.org/10.1002/sce.20065
  30. Schwartz, R. S., Lederman, N. G. & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science Education, 88(4), 610-645 https://doi.org/10.1002/sce.10128
  31. Treffinger, D. J., Isaksen, S. G., & Dorval, K. B. (2004). 창의적 문제해결 (김영채 역). 서울: 박영사 (원 저 2000 출판)
  32. Woolnough, B. E. (2000). Authentic science in School? - an evidence-based rational. Physics Education, 35(4), 2000