Analysis of Connection Errors by Students' Field Independence-Dependence in Learning Chemistry Concepts with Multiple External Representations

다중 표상을 활용한 화학 개념 학습에서 학생들의 장독립성-장의존성에 따른 연계 오류 분석

  • Published : 2008.08.30

Abstract

This study investigated connecting errors by students' field independence-dependence in learning chemistry concepts with multiple external representations in current science textbooks. Seventh graders (N=196) at a middle school were assigned to the BL and CL groups, which were respectively taught "Boyle's Law" and "Charles's Law." A field independence-dependence test was administered. After learning the target concept with text and picture emphasizing the particulate nature of matter, a connecting test was also administered. Five types of connecting errors were identified: Insufficient connection, misconnection, rash connection, impossible connection, and failing to connect. 'Failing to connect,' 'Misconnection,' and 'Rash connection' were found to be the frequent types of connecting errors regardless of the target concepts. The frequencies and percentages of the types of connecting errors were not significantly different between the field independent and field dependent students. Educational implications of these findings are discussed.

이 연구에서는 학생들이 현재의 과학 교과서에서 화학 개념 학습을 위해 제시된 외적 표상들을 연계하는 과정에서 범하는 오류 유형을 학생들의 장독립성-장의존성에 따라 조사했다. 1개 중학교 1학년 학생 196명을 '보일의 법칙'을 학습하는 BL 집단과 '샤를의 법칙'을 학습하는 CL 집단으로 배치한 후, 장독립성-장의존성 검사를 실시했다. 각 집단 학생들에게 물질의 입자성이 강조된 글과 그림으로 해당 개념을 학습하게 한 후, 연계 과정 검사를 실시했다. 연구 결과, '불충한 연결', '부적절한 연결', '무분별한 연결', '불가능한 연결', '연결 불이행'의 5가지 연계 오류 유형이 나타났다. 이 중에서도 목표 개념과 관계없이 '연결 불이행', '부적절한 연결', '무분별한 연결'이 많이 나타났다. 장독립적 학생들과 장의존적 학생들이 범한 연계 오류의 빈도 사이에는 통계적으로 유의미한 차이가 없었다. 이에 대한 교육적 함의를 논의했다.

Keywords

References

  1. 강훈식 (2006). 중학교 화학 수업에서 외적 표상의 유형 변환을 촉진하는 그리기와 쓰기의 효과 및 활용 방안. 서울대학교 대학원 박사 학위 논문
  2. 강훈식, 김유정, 노태희 (2007). 제7차 중학교 1학년 과학 교과서의 물질 단원에서 외적 표상들의 활용 실태 분석. 한국과학교육학회지, 27(3), 190-200
  3. 김경순, 신은주, 변순화, 노태희 (2006). 비유를 사 용한 화학 개념 학습에서 유발되는 학생들의 대응 오류 분석. 한국과학교육학회지, 26(4), 592-600
  4. 노태희, 윤미숙, 강훈식, 한재영 (2007). 중학교 3학 년 과학 교과서에서 원자 및 분자 개념을 표상한 시각 자료의 기호학적 분석. 대한화학회지, 51(5), 423-432 https://doi.org/10.5012/jkcs.2007.51.5.423
  5. 박재원, 백성혜 (2004). 초등학교 과학 수업에 적용 한 입자 모델의 컴퓨터 애니메이션 교수자료의 학습 효 과. 초등과학교육, 23(2), 116-122
  6. 유승아, 구인선, 김봉곤, 강대호 (1999). 기체의 성 질에 대한 중, 고등학생들의 오개념에 관한 연구. 대한화학회지, 43(5), 564-577
  7. 한재영 (2006). 과학 교과서에 사용된 화살표의 의 미. 초등과학교육, 25(3), 244-256
  8. Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131-152 https://doi.org/10.1016/S0360-1315(99)00029-9
  9. Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198 https://doi.org/10.1016/j.learninstruc.2006.03.001
  10. Ardac, D., & Akaygun, S. (2004). Effectiveness of multimedia-based instruction that emphasizes molecular representations on students' understanding of chemical change. Journal of Research in Science Teaching, 41(4), 317-337 https://doi.org/10.1002/tea.20005
  11. Ardac, D., & Akaygun, S. (2005). Using static and dynamic visuals to represent chemical change at molecular level. International Journal of Science Education, 27(11),1269-1298 https://doi.org/10.1080/09500690500102284
  12. de Jong, T., Ainsworth, S., Dobson, M., van der Hulst, A., Levonen,. J., Reimann, P., Sime, J.-A., Van Someren, M., Spada, H., & Swaak, J. (1998). Acquiring knowledge in science and mathematics: The use of multiple representations in technology based learning environments. In M. Van Someren, P. Reimann, H. Boshuizen, & T. de Jong (Eds.), Learning with multiple representations (pp. 9-40). Oxford: Elsevier Science
  13. Dwyer, F. M., & Moore, D. M. (1995). Effect of color coding and test type (visual/verbal) on students identified as possessing different field dependence levels. Selected Readings from the Annual Conference of the International Visual Literacy Association, Tempe, AZ. (ERIC Document Reproduction Service No. ED 380078)
  14. Han, J., & Roth, W.-M. (2006). Chemical inscriptions in Korean textbooks: Semiotics of macro- and microworld. Science Education, 90(2), 173-201 https://doi.org/10.1002/sce.20091
  15. Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205-226 https://doi.org/10.1016/S0959-4752(02)00021-X
  16. Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research on Science Teaching, 34(9), 949-968 https://doi.org/10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U
  17. Lin, H.-S., Cheng, H.-J., & Lawrenz, F. (2000). The assessment of students and teachers' understanding of gas laws. Journal of Chemical Education, 77(2), 235-238 https://doi.org/10.1021/ed077p235
  18. Linn, M. C., & Kyllonen, P. (1981). The field dependence-independence construct: Some, one, or none. Journal of Educational Psychology, 73(2), 261-273 https://doi.org/10.1037/0022-0663.73.2.261
  19. Mayer, R. E. (2003). The promise of multimedia learning: Using the same instructional design methods across different media. Learning and Instruction, 13(2), 125-139 https://doi.org/10.1016/S0959-4752(02)00016-6
  20. Schnotz, W. (2005). Integrative model of text and picture comprehension. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 49-69). Cambridge: Cambridge University Press
  21. Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227-237 https://doi.org/10.1016/S0959-4752(02)00022-1
  22. Singer, J. E., Wu, H.-K., & Tal, R. (2003). Students' understanding of the particulate nature of matter. School Science and Mathematics, 103(1), 28-44 https://doi.org/10.1111/j.1949-8594.2003.tb18111.x
  23. Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1368 https://doi.org/10.1080/0950069032000070306
  24. Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147-177 https://doi.org/10.1007/s10648-005-3951-0
  25. Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review, 17(4), 285- 325 https://doi.org/10.1007/s10648-005-8136-3
  26. Van Someren, M. W., Reimann, P., Boshuizen, H. P. A., & de Jong, T. (1998). Learning with Multiple Representations. Oxford: Elsevier
  27. Veronikas, S., & Shaughnessy, M. F. (2005). An interview with Richard Mayer. Educational Psychology Review, 17(2), 179-189 https://doi.org/10.1007/s10648-005-3952-z
  28. Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492 https://doi.org/10.1002/sce.10126