Enhanced Nitrate Uptake by Enterobacter amnigenus GG0461 at Alkaline pH

염기성 pH에서 Enterobacter amnigenus GG0461의 질산이온 흡수증가

  • Choi, Tae-Keun (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Sung-Tae (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Han, Min-Woo (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Young-Kee (Department of Agricultural Chemistry, Chungbuk National University)
  • 최태근 (충북대학교 농업생명환경대학 농화학과) ;
  • 김성태 (충북대학교 농업생명환경대학 농화학과) ;
  • 한민우 (충북대학교 농업생명환경대학 농화학과) ;
  • 김영기 (충북대학교 농업생명환경대학 농화학과)
  • Published : 2008.03.31

Abstract

Salt accumulation in soils of greenhouse due to the massive application of nitrogen fertilizers causes salt stress on the various crops, a serious problem in domestic agriculture. Since the majority of the salinity is nitrate, the excess nitrate should be removed; therefore, a bacterial strain having high capacity of nitrate uptake and identified as Enterobacter amnigenus GG0461 was isolated from the soils of greenhouse. Optimum conditions for the bacterial growth and nitrate uptake were investigated. GG0461 was able to grow without nitrate; however, nitrate facilitated the growth. The rate of nitrate uptake increased at alkaline pH and both growth and nitrate uptake were maximal at pH 8-9. When the initial pH of culture medium was increased to pH 8 or 9, it was decreased to neutral upon bacterial growth and nitrate uptake. These results imply that the major factor mediating bacterial nitrate uptake is a nitrate/proton antiporter. The fact was supported by the effect of nitrate addition in the absence of nitrate, since the addition of nitrate greatly increased the nitrate uptake and rapidly decreased pH of media.

질소비료의 과량 시용에 따른 시설원예지 토양 중 염류집적은 다양한 직물에 염류장애를 유발하여 국내농업에 심각한 문제가 되고 있다. 염류의 주성분은 질산염으로 필요이상의 질산이온을 제거하기 위하여 질산이온 흡수력이 크며, Enterobacter amnigenus GG0461로 동정된 토양세균을 시설원예 토양에서 분리하였다. 이 균주의 최적 생육 및 질산이온 흡수력을 조사하였을 때, GG0461 균주는 질산이온이 없는 조건에서 생육이 가능하나, 질산이온이 존재할 때 생육이 크게 촉진되었다. 또한, 염기성 조건에서 질산이온 흡수율이 증가하였으며, 성장과 질산이온 흡수 모두 pH 8-9에서 최대로 나타났다. 배지의 초기 pH를 8과 9로 조정하였을 때, 균주에 의하여 질산이온이 흡수됨에 따라 배지의 pH는 중성으로 감소하였다. 이러한 결과는 질산이온 흡수를 위한 주된 인자가 nitrate/proton antiporter임을 의미한다. 이것은 질산이온이 없는 조건에서 질산이온의 첨가 효과인 질산이온 흡수의 급격한 증가와 빠른 배지의 pH 감소 사실로도 확인되었다.

Keywords

References

  1. Jung, Y. S., Cho, S. H., Yang, J. E., Kim, J. J. and Lim, H. S. (2000) Available phosphorus and electrical conductivity of the saturated extracts of soils from the plastic film houses. Kor. J. Soil Sci. Fert. 33, 1-7
  2. RDA Report. (2004) Report of Environmental Agriculture; Factors affect on the increase in salinity of greenhouse soils
  3. Kang, S. S and Hong, S. D. (2004) Estimation of optimum application rate of nitrogen fertilizer based on soil nitrate concentration for tomato cultivation in plastic film house. Kor. J. Soil Sci. Fert. 37, 74-82
  4. Jin, S. J., Jo, H. J. and Bae, J. J. (2004) Effect of soil salinity on nitrate accumulation of lettuce. Kor. J. Soil Sci. Fert. 37, 91-96
  5. Onyesom, I. and Okoh, P. N. (2006) Quantitative analysis of nitrate and nitrite in vegetables commonly consumed in Delta State, Nigeria. Br. J. Nutr. 96, 902-905
  6. European Commission. (1997) Council regulation 194/97 of 31 January 1997. Official J. Eur. Commu. L31, 48-50
  7. Chung, W. T., Choi, K. C., Youn, C., Song, C. E. and Chun, W. B. (1997) Effects of nitrogen fertilization on nitrate accumulation in Italian ryegrass. J. Kor. Grassl. Sci. 17, 135-140
  8. Kim, T.-H. (2000) Nitrate metabolism affected by osmotic stress and nitrate supply level in relation to osmoregulation. J. Kor. Grassl. Sci. 20, 77-84
  9. Vilchez, C., Garbayo, I., Markvicheva, E., Galvan, F. and Leon, R. (2001) Studies on the suitability of alginate-entrapped Chlamydomonas reinhardtii cells for sustaining nitrate consumption process. Bioresour. Technol. 78, 55-61 https://doi.org/10.1016/S0960-8524(00)00162-0
  10. Steenhoudt, O., Ping, Z., Broek, A. V. and Vanderleyden, J. (2001) A spontaneous chlorate-resistant mutant of Azospirillum brasilense Sp245 displays defects in nitrate reduction and plant root colonization. Biol. Fertil. Soils 33, 317-322 https://doi.org/10.1007/s003740000329
  11. Zhu, J. K. (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247-273 https://doi.org/10.1146/annurev.arplant.53.091401.143329
  12. Gamble, R. N., Betlach, M. R. and Tiedje, J. M. (1997) Numerically dominant denitrifying bacteria from world soils. Appl. Environ. Microbiol. 33, 926-939
  13. Hwang, S. H., Lee, Y. H. and Cho, M. H. (1999) Isolation and characteristics of denitrifying Pseudomonas CW4. Kor. J. Biotechnol. Bioeng. 14, 616-620
  14. Richard, Y. R. (1989) Operating experiences of full-scale biological and ion-exchange denitrification plants in France. Water Environ. J. 3, 154-167 https://doi.org/10.1111/j.1747-6593.1989.tb01503.x
  15. Cho, K. H., Lee, G. J., Ahn, H. J. and Kim, Y. K. (2005) Nitrate uptakes by microorganism isolated from the soils of greenhouse. Agric. Chem. Biotechnol. 48, 11-15
  16. Tsay, T. F., Schroeder, J. I., Feldmann, K. A. and Crawford, N. M. (1993) The herbicide sensitivity gene CHL1 arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72, 705-713 https://doi.org/10.1016/0092-8674(93)90399-B
  17. Unkles, S. E., Hawker, K. L., Grieve, C., Campbell, E. I., Montague, P. and Kinghorn, J. R. (1991) crnA encodes a nitrate transporter in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 88, 204-208 https://doi.org/10.1073/pnas.88.1.204
  18. Sakamoto, T., Inoue-Sakamoto, K. and Bryant, D. A. (1999) A novel nitrate-nitrite permease in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 181, 7363-7372
  19. De Angeli, A., Monachello, D., Ephritikhine, G., Frachisse, J. M., Thomone, S., Gambale, F. and Varvier-Brygoo, H. (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442, 877-878