DOI QR코드

DOI QR Code

Encapsulation with Oyster Hydrolysate Using Alginate.

알긴산을 이용한 굴 효소 가수분해물의 캡슐화

  • Cho, Kyung-Joo (Department of Food Science and Biotech., Kyunghee University) ;
  • Choi, Yeung-Joon (Division of Marine Life Science, Gyeongsang National University) ;
  • Ahn, Son-Cheol (Department of Microbiology and immunology, Pusan National University School of Medicine) ;
  • Baik, Moo-Yeol (Department of Food Science and Biotech., Kyunghee University) ;
  • Kim, Byung-Yong (Department of Food Science and Biotech., Kyunghee University)
  • 조경주 (경희대학교 식품공학과) ;
  • 최영준 (경상대학교 해양생물이용학부) ;
  • 안순철 (부산대학교 의과대학 미생물학교실) ;
  • 백무열 (경희대학교 식품공학과) ;
  • 김병용 (경희대학교 식품공학과)
  • Published : 2008.05.30

Abstract

Possibility of capsulation of oyster hydrolysate was investigated due to a low score of preference from the previous products, such as drinks and solid tablets of oyster hydrolysate. Encapsulation was made by emulsification to protect functional properties of oyster hydrolysate. Sodium alginate and calcium chloride were used as a wall material. Capsulation yield increased with increasing the capsule diameter and calcium chloride concentration, whereas capsulation yield decreased with increasing the oyster-hydrolysate concentration and stirring speed. Feasibility of capsulation of oyster hydrolysate was discussed for the processing of the functional food.

굴 효소 가수 분해물의 항산화성 측정을 통해 그 기능성을 확인하였으며, 아미노산 분석을 통해 내부에 함유된 유리 아미노산의 종류 및 함량을 측정하였다. 그러나 앞선 실험에서 굴 효소 가수 분해물의 기호도가 매우 낮게 측정되어 기호도를 증진시키고, 식품 소재로 으용 가능한 캡슐을 제조하기로 하였다. 캡슐의 외벽 물질로는 알긴산과 염화칼슘을 이용하였고, 굴 효소 가수분해물의 고유의 기능성을 보전하기 위해 열이나 유기용매를 가하지 않는 유화법으로 캡슐을 제조하였다. 제조 결과 캡슐의 직경이 커지고 염화칼슘의 농도가 높을수록 제조된 캡슐의 수율이 증가하였으며, 이에 반해 굴 효소 가수분해물의 농도가 높아지고, 교반속도가 증가할수록 캡슐의 수율이 감소함을 확인하였다. 이와 같은 결과를 이용하여 캡슐 제조의 최적 공정을 확립할 수 있으며, 향후 제조 공정에 응용 가능할 것으로 기대된다.

Keywords

References

  1. Ana, B., M. Manuel and C. Domingo. 1999. Formation of calcium alginate gel capsules : Influence of sodium alginate and $CaCl_2$ concentration on gelation kinetics. J. Biosci. Bioeng. 88, 686-689. https://doi.org/10.1016/S1389-1723(00)87103-0
  2. Ariyosi, Y. 1993. Antigiotensin converting enzyme inhibitors derived from food proteins. Trend Food Sci. Technol. 4, 139-144. https://doi.org/10.1016/0924-2244(93)90033-7
  3. Bio-Rad protein assay. 1987. Bio-Rad technical bulletin 1069. Bio-Rad laboratories.
  4. Bradford, M. M. 1976. A rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Byun, H. G. and S. K. Kim. 2001. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska Pollack (Theragra chalcogramma) skin. Process Biochemistry. 36, 1155-1162. https://doi.org/10.1016/S0032-9592(00)00297-1
  6. Chen, H. M., K. Muramoto and F. Yamauchi. 1995. Structural analysis of antioxidativr peptides from soybean $\epsilon$-conglycinin. J. Agric. Food Chem. 43, 574-578. https://doi.org/10.1021/jf00051a004
  7. Chen, L. and M. Subirade. 2007. Effect of preparation conditions on the nutrient release properties of alginate whey protein granular microspheres. Eur. J. Pharm. Biopharm. 65, 354-362. https://doi.org/10.1016/j.ejpb.2006.10.012
  8. Cho, M., B. Y. Kim and J. H. Rhim. 2003. Degradation of alginate solution by using $gamma$-irradiation and organic acid. Korean J. Food Sci. Technol. 35, 67-71.
  9. Cho, M., B. Y. Kim, M. Y. Baik and J. H. Rhim. 2005. Microencapsulation of fish oil by low-molecular weight sodium alginate. Korean J. Food Sci. Technol. 37, 730-735.
  10. Choi, J. S., J. H. Jung, J. H. Lee and S. S. Kang. 1995. A naphthalene glycoside from Cassia tora. Phytochemistry. 40, 997-999. https://doi.org/10.1016/0031-9422(95)00318-2
  11. Davisdon, P. M. and M. E. Parish. 1989. Methods for testing the efficacy of food antimicrobials. J. Food Technol. 1, 148.
  12. Frederic, W. D. Jr., J. N. J. Rainey, N. P. Wong, L. F. Edmondson and D. E. LaCroix. 1981. Color, flavor, and iron bioavailability in iron-fortified chocolate milk. J. Dairy Sci. 64, 1785-1793. https://doi.org/10.3168/jds.S0022-0302(81)82767-1
  13. Fukudome, S. and M. Yoshikawa. 1992. Opioid peptides derived from wheat gluten: Their isolation and characterization. FEBS Letters. 296, 107-111. https://doi.org/10.1016/0014-5793(92)80414-C
  14. Han, S. C., J. S. Ryu, K. Y. Lee, D. M. Kim and C. S. Choi. 2003. A study on the microencapsulation of DHA and antioxidant effect. J. Research Institute for Catalysis. 24, 81-90.
  15. Jeon, Y. J., H. G. Byun and S. K. Kim. 1999. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochemistry. 35, 471-478. https://doi.org/10.1016/S0032-9592(99)00098-9
  16. Ji, C. I., S. M. Cho, Y. S. Yun and S. B. Kim. 2007. Optimization of thysical conditions for caviar analog preparation using calcium-alginate gel capsules. J. Fish Sci. Technol. 10, 103-112. https://doi.org/10.5657/fas.2007.10.3.103
  17. Jiang, G., U. K. Jee, P. J. Maeng and S. J. Hwang. 2001. Evaluation of alginate microspheres prepared by emulsion and spray method for oral vaccine delivery system. J. Korean Pharmco. Sci. 31, 241-256.
  18. Kennedy, J. F., A. J. Griffiths and D. P. Atkins. 1984. Gums and stabilizers for the food industry. p. 422, Perhamon Press. Oxford. U.K.
  19. Kim, J. G. 2004. Changes of components affecting organoleptic quality during the ripening of traditional Korean soybean paste: Amino nitrogen, amino acids, and color. J. Fd. Hyg. Safety 19, 31-37.
  20. Kim, K. S., J. H. Lim, T. J. Bae, C. K. Park and M. H. Kim. 2002. Characteristics of food components in granular ark and ark shell. J. Korean Fish Soc. 35, 512-518. https://doi.org/10.5657/kfas.2002.35.5.512
  21. Kim, S. K. and H. G. Byun. 1994. Development of optimum process of continous hydrolysis of fish skin gelatin using a three-step recycle membrane reactor. J. Korean Ind. Eng. Chem. 5, 681-697.
  22. Leahy, M. M., S. Anandaraman, W. E. Banes and G. A. Reineccius. 1983. Spray drying of food flavours: 2. A comparison of encapsulating agents for the drying of artificial flavours. Perf. Flav. 8, 49-57.
  23. Lim, Y. S., B. J. You, K. W. Lee, G. B. Kim, I. S. Lee and Y. J. Cho. 2002. Changes of components in salt-fermented blenny, Enedrias nebulosus sauce during fermentation. J. Korean Fish Soc. 35, 297-301. https://doi.org/10.5657/kfas.2002.35.3.297
  24. McNeely, W. H. and D. J. H. Pettitt. 1973. Industrial gums, 2nd eds., pp. 49, Academic Press. New York. U.S.A.
  25. Mitsuda, H., K. Yasumoto and K. Iwami. 1996. Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyoto shokuryo 19, 210-214.
  26. Mori, B., K. Kusima, T. Iwasaki and H. Omiya. 1981. Dietary fiber content of seaweed. Nippon Nogeikagaku 55, 787-791. https://doi.org/10.1271/nogeikagaku1924.55.787
  27. Nishimune, T., T. Sumimoto, T. Yakusiji and N. Kunita. 1991. Determination of total dietary fiber in Japanese foods. J. Assoc. Off. Anal. Chem. 74, 350-359.
  28. Park, S. J. and Y. Kang. 2005. Preparation and characterization of calcium alginate microcapsules by emulsification- internal gelation. Polyme, 29, 369-374
  29. Re, M. I. 1998. Microencapsulation by spray drying. Drying Tech. 16, 1195-1236. https://doi.org/10.1080/07373939808917460
  30. Rosenberg, M., I. J. Kopelman and Y. Talmon. 1990. Factors affecting retention in spray-drying microencapsulation of volatile materials. J. Agric. Food Chem. 38. 1288-1294. https://doi.org/10.1021/jf00095a030
  31. Rosenberg, M. and T. Y. Sheu. 1996. Microencasulation of volatiles by spray-drying in whey protein-based wall systems. Int. Dairy J. 6, 273-284. https://doi.org/10.1016/0958-6946(95)00020-8
  32. Voilley, A. J., S. J. Risch and G. A. Reineccius, 1995. Flavour encapsulation: Influence of encapsulation media on aroma retention during drying. Encapsulation controlled released food Ingredients. pp. 169-179. American Chemical Society Symposium Series 590: ACS, Washington, DC.