DOI QR코드

DOI QR Code

Estimation of WEPP's Parameters in Burnt Mountains

산불지역의 WEPP 매개변수 추정

  • Published : 2008.06.30

Abstract

Fire-enhanced soil hydrophobicity often increases runoff and erosion in the mountain hillslope following severe wildfires. Estimation techniques for WEPP's parameters were studied in burnt mountain slopes. In burnt mountain slopes, the model over-predicted runoff in the small runoff and under-predicted runoff in the great runoff, and in the lower sediment runoff it had a tendency to over-predict soil loss. The effective hydraulic conductivity was most sensitive in the WEPP's runoff and its sediment runoff was mainly effected by the effective hydraulic conductivity, initial saturation, rill erodibility, and interrill erodibility. To improve the applicability of the WEPP, the adjustment coefficient of effective hydraulic conductivity was defined for runoff and the adjustment coefficient of rill erodibility and interrill erodibility was presented for sediment runoff. The adjustment coefficient of effective hydraulic conductivity in wildfire mountain slopes increased with maximum rainfall intensity of single storm and the vegetation height index. The adjustment coefficients of rill erodibility depended on soil components of size distribution curve and total rainfall depths in single storm. The adjustment coefficients of interrill erodibility decreased with increases of maximum rainfall intensity and vegetation height index. These results may be used in the application of WEPP model for wildfire mountain slopes.

산불에 따른 토양의 반발수력 증대로 산지의 유출량과 토양침식량이 가중된다. WEPP모형을 산불지역에 적용하기 위한 주요 매개변수들의 최적 추정기법에 대해 연구하였다. 산불지역에서 WEPP모형은 유출량이 적을 때 과대평가하고 많으면 과소평가하였으며 토양침식량이 적은 경우에도 과대 산정하는 경향이 있다. 산불지역에서 이 모형의 유출량 변화는 유효투수계수가 가장 큰 영향을 미치고 토사유출량 변화는 유효투수계수, 초기포화도, 세류침식계수, 세류간침식계수가 주로 영향을 미치는 것으로 나타났다. 산불지역에서 WEPP의 적용성을 향상시키기 위하여 유출량에 대해서는 유효투수조정계수를 도입하고, 토사유출량에 대해서는 세류침식조정계수와 세류간침식조정계수를 도입하였다. 유효투수조정계수는 강우사상의 최대강우강도와 식생인자에 따라 증가하는 경향을 나타내었다. 세류침식조정계수는 입도분포의 토양성분 특성과 강우사상의 총강우량에 좌우되었으며 세류간침식조정계수는 최대강우강도와 식생고지수의 증가에 따라 감소하였다. 본 연구결과는 산불지역 사면에서 WEPP모형의 적용에 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. 국립방재연구소 (2001). 강원도 산불지역 재해의 저감대책 수립. pp. 185-226
  2. 국립방재연구소 (2002). 산불재해에 대한 요인분석과대책. pp. 61-68
  3. 국립방재연구소 (2003). 산지지역 우수 및 토사유출량관측 및 저감대책 수립. pp. 29-91
  4. 박상덕 (2005). “산불지역 2차피해방지를 위한 하천관리.” 동해안 대형산불의 교훈 : 진단과 예방 및 복구, 강원발전연구원, 연구보고서 05-01, pp. 65-79
  5. 박상덕, 신승숙, 이규송 (2005). “산불지역 유출 및 토양침식 민감도.” 한국수자원학회 논문집, 한국수자원학회, 제38권, 제1호, pp. 59-71
  6. 이규송, 정연숙 (1999). “산불로 교란된 고성지역에서자연복원지와 조림복원지의 영양염류수지 비교.” 동해안연구, Vol. 10, No. 1, pp. 137-153
  7. 이규송, 정연숙, 김석철, 신승숙, 노찬호, 박상덕 (2004). “동해안 산불로 피해지에서 산불 후 경과 년 수에 따른 식생 구조의 발달.”, 한국생태학회지, 한국생태학회, Vol. 27, No. 2, pp. 99-106 https://doi.org/10.5141/JEFB.2004.27.2.099
  8. Andreu, V., Imeson, A.C. and Rubio, J.L. (2001). "Temporal changes in soil aggregates and water erosion after a wildfire in a Mediterranean pine forest." CATENA, Vol. 44. pp. 80-82 https://doi.org/10.1016/S0341-8162(00)00177-6
  9. Brown, L.C. and Foster, G.R. (1987). "Storm erosivity using idealized intensity distributions." Transaction of the American Society of Agricultural Engineers, Vol. 30, pp. 379-386 https://doi.org/10.13031/2013.31957
  10. Doerr, S.H., Shakesby, R.A., Blake, W.H., Chafer, C. J., Humphres, G. S. and Wallbrink, P.J. (2006). "Effects of differing wildfire severities on soil wettability and implications for hydrological response." Journal of Hydrology, Vol. 319. pp.295-311 https://doi.org/10.1016/j.jhydrol.2005.06.038
  11. Flanagan, D. C. and Nrearing, M. A. (1995). USDA-Water erosion prediction project: Hillslope profile and watershed model documentation. NSERL Report No.10 West Lafayette, IN: USDA-ARS NAtional Soil Erosion Research Laboratory
  12. Ghidey, F.E., Alberts, E.E., and Kramer, L.A. (1995). "Comparison of run-off and soil loss predictions from the WEPP hillslope model to measured values for eight cropping and mangement treatment." ASAE paper No. 95-2385, ASAE Publ., St. Josehp, MI
  13. Hibbert, A.R. (1985). "Storm runoff and sediment production after wildfire in Chaparral." In Hydrology and Water Resources in Arizona and the Southwest, AWRA: Las Vegas, NV; pp. 31-42
  14. Inbar, M., Wittenberg, L. and Tamir M. (1997). "Soil erosion and forestry management after wildfire in a Mediterranean woodland, Mt. Carmel, Israel." IJWF , Vol. 7, pp. 285-294 https://doi.org/10.1071/WF9970285
  15. Kramer, L. A., and Alberts, E. E. (1995). "Validation of WEPP 95.1 daily erosion simulation." ASAE paper No. 95-2385, ASAE Publ., St. Josehp, MI
  16. Lane, L.J., Nichlls, M.H., Levick, L.R., and Kidwell, M.P. (2001). A simulation model for erosion and sediment yield at the hillslope scale. In: Harmon, R.S., Doe,w.w.III, Landscape Erosion and Evolution Modeling, Kluwer Academic/Plenum Publishers, New York, pp.201-237
  17. Lundekvam, H. E. (2007). "Plot study and modelling of hydrology and erosion in southeast Norway." CATENA, Vol. 71. pp.200-209 https://doi.org/10.1016/j.catena.2007.03.004
  18. McCuen R. H. (1973). "The role of sensitivity analysis in hydraulic modeling". Journal of Hydrlolgy, Vol. 18. pp.37-53 https://doi.org/10.1016/0022-1694(73)90024-3
  19. Meyer, L. D. and Wischmeier, W. H. (1996). "Mathmatical simulation of the process of soil erosion by water." Trans. of the ASAE, Vol. 12, No. 6, pp. 754-758 https://doi.org/10.1016/0022-1694(73)90024-3
  20. Nearing, M. A. (1998). "Why soil erosion models over-predict small soil losses and uner-predict large soil losses." CATENA, Vol. 32. pp. 15-22 https://doi.org/10.1016/S0341-8162(97)00052-0
  21. Nearing MA, Deer-Ascough L, and Laflen J. M. (1990). "Sensitivity of the WEPP hillslope version soil erosion model." Trans. of the ASAE, Vol. 33, pp. 839-849 https://doi.org/10.13031/2013.31409
  22. Onda, Y., Dietrich, W. E. and Booker F. (2008). "Evolution of Overland flow after a sever forest fire, Pont Reyes, California." CATENA, Vol. 72. pp. 13-20 https://doi.org/10.1016/j.catena.2007.02.003
  23. Pan, C. and Shangguan Z. (2006). "Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions." Journal of Hydrology, Vol. 331. pp. 178-185 https://doi.org/10.1016/j.jhydrol.2006.05.011
  24. Park, S.D., Lee, K.S., Huang, C.H., Yoon, Y.H. and Shin, S. S. (2005). "Postfire Soil Erosion in Burnt Mountain Slopes." Proceedings of 31st IAHR Congress: Water Engineering for the Future-Choices and Challenges, IAHR, Soul, Korea, pp. 3748-3756
  25. Scott, D.F. and van Wyke, D. B. (1990). "The effects of wildfire on soil wettability and hydrological behavior of an afforested catchment." Journal of Hydrlolgy, Vol. 121. pp. 239-256 https://doi.org/10.1016/0022-1694(90)90234-O
  26. Soto, Benedicto and Diax-Fierros, Francisco (1998). "Runoff and soil erosion from areas of burnt scrub: comparison of experimental results with those predicted by the WEPP model." CATENA, Vol. 31. pp. 267-268 https://doi.org/10.1016/S0341-8162(97)00047-7
  27. Wendt, R. C., Alberts, E.E., and Hjelmfelt, A.T. Jr. (1986). "Validation of run-off and soil loss from fallow experimental plots." SSSAJ, Vol. 50, pp. 730-736 https://doi.org/10.2136/sssaj1986.03615995005000030035x
  28. Wohlgemuth, P.M., Hubbert, K.R. and Robichaud P. (2001). "The effect of log erosion barriers on post-fire hydrologic response and sediment yield in small forest watersheds, southern California." Hydrological Processes, Vol. 15, pp. 3053-3066 https://doi.org/10.1002/hyp.391
  29. Zhang, X.C., Nearing, M. A., Risse, L. M., and McGreger, K. C. (1996). "Evaluation of run-off and soil loss predicting using natural run-off plot data." Trans. of the ASAE, Vol. 39, No. 3, pp. 855-863 https://doi.org/10.13031/2013.27570

Cited by

  1. SEMMA Revision to Evaluate Soil Erosion on Mountainous Watershed of Large Scale vol.46, pp.9, 2013, https://doi.org/10.3741/JKWRA.2013.46.9.885