DOI QR코드

DOI QR Code

Bond Failure Surface of Glass Fiber Reinforced Polymer Bars

GFRP 보강근의 부착파괴면

  • Lee, Jung-Yoon (Dept. of Architectural Engineering, Sungkyunkwan University) ;
  • Yi, Chong-Ku (Dept. of Civil Environmental and Architectural Engineering, Korea University) ;
  • Kim, Tae-Young (Engineering and Construction, Samsung Corporation) ;
  • Park, Ji-Sun (Korea Institute of Construction Technology) ;
  • Park, Young-Hwan (Korea Institute of Construction Technology)
  • Published : 2008.06.30

Abstract

The effects of concrete strength on bond-slip behavior and the failure mechanisms of glass fiber reinforced polymer (GFRP) bar embedded in concrete under direct pullout were investigated in this study. Total of twenty seven specimens were prepared by placing two different types of GFRP bars and conventional steel rebar in 25 MPa, 55 MPa, and 75 MPa concrete and tested according to CSA S806-02. The test results showed that the bond strength of the GFRP rebars as well as the steel increased with the concrete strength. However, the increase in the bond strength with respect to the concrete strength was not as significant in the GFRP series as the steel, and it was attributed to the interlaminar failure mechanism observed in the GFRP test specimens.

이 연구에서는 콘크리트의 압축강도가 증가함에 따라서 변화하는 GFRP 보강근의 부착 특성을 조사하였다. 실험에서는 3종류의 콘크리트에 배근된 27개의 보강근의 부착응력-부착미끌림 관계를 측정하였다. 하중가력이 종료한 후에 실험체를 절단하여 고강도콘크리트가 GFRP 보강근의 부착에 미치는 영향을 살펴보았다. 실험 결과에 의하면 GFRP 보강근의 부착파괴면은 철근과 상이하게 2개의 면으로 구분되었다. 파괴면은 콘크리트와 외피 사이의 파괴면과 외피와 섬유보강근 사이의 파괴면으로 구분 할 수 있었다. 이와 같은 GFRP 보강근의 부착파괴면은 콘크리트의 압축강도가 증가함에 따라서 콘크리트의 접착력과 외피의 접착력의 상호관계에 따라서 달라졌다. GFRP 보강근의 부착강도는 콘크리트의 압축강도가 증가함에 따라서 증가하였지만, 증가 비율은 철근의 부착강도보다 낮았다.

Keywords

References

  1. Achillides, Z., Pilakoutas, K., and Waldron, P., "Bond Behaviour of FRP Bars to Concrete," Proceedings of the 3rd International Symposium on Non-metallic (FRP) Reinforcement for Concrete Structures, Sapporo, Japan, October 1997, pp. 341-348
  2. Okelo, Roman and Yuan, Robert L., "Bond Strength of Fiber Reinforced Polymer Rebars in Normal Strength Concrete," Journal of Composites for Construction, ASCE, Vol. 9, No. 3, 2005, pp. 203-213 https://doi.org/10.1061/(ASCE)1090-0268(2005)9:3(203)
  3. 김태영, 박지선, 이정윤, 김긍환, "GFRP 복합재료 보강근의 부착강도에 미치는 영향," 대한건축학회 논문집, 21권, 12호, 2005, pp. 69-76
  4. CSA Standard, S806-02 Design and Construction of Building Components with Fibre-Reinforced Polymers, Canadian Standard Association, 2002, 177 pp
  5. Eligehausen, R., Popov, E. P., and Bertero, V. V., Load Bond Stress-Slip Relationships of Deformed Bars Under Generalized Excitations, Report No.UCB/EERC82-83, Earthquake Engineering Research Center, University of Califonia, Berkeley, California, Oct. 1983, 162 pp
  6. ACI 440.1R-03, Guide for the Design and Construction of Concrete Reinforced with FRP Bars, ACI Committee 440, 2003, 44 pp
  7. CEB-FIP, Bond of Reinforcement in Concrete, State-of-Art Report, Bulletin, 2000, 427 pp

Cited by

  1. Governing Design Factors of GFRP-Reinforced Concrete Bridge Deck vol.30, pp.6, 2015, https://doi.org/10.14346/JKOSOS.2015.30.6.70
  2. Bond Properties of GFRP Rebar in Fiber Reinforced Concrete (Engineered Cementitious Composite) vol.23, pp.6, 2011, https://doi.org/10.4334/JKCI.2011.23.6.809
  3. Bond Properties of GFRP Rebar with Cover Thickness and Volume Fraction of Steel Fiber vol.24, pp.6, 2012, https://doi.org/10.4334/JKCI.2012.24.6.761