DOI QR코드

DOI QR Code

Relation between Autogenous Shrinkage of Concrete and Relative Humidity, Capillary Pressure, Surface Energy in Pore

공극 내 상대습도, 모세관압력, 표면에너지 변화에 따른 콘크리트 자기수축

  • 이창수 (서울시립대학교 토목공학과) ;
  • 박종혁 (서울시립대학교 토목공학과)
  • Published : 2008.04.30

Abstract

Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio. Internal humidity change and shrinkage strain were about 10%, 4% and $320\times10^{-6}$, $120\times10^{-6}$ respectively on concrete with water binder ratio 0.3, 0.4 and from the results, humidity change and shrinkage represented the strong linear relation regardless of mixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20 nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.

물-결합재비가 낮은 고성능콘크리트의 자기건조에 의한 습도감소와 수축과의 연관성을 파악하기 위하여 물-결합재비 0.3, 0.4의 배합에 대하여 습도와 변형률을 측정하였다. 그 결과 물-결합재비 0.3의 콘크리트 내부 습도 감소는 약 10%, 수축변형률은 약 $320\times10^{-6}$을 나타내었고, 물-결합재비 0.4의 콘크리트의 경우 4%의 습도 감소와 $120\times10^{-6}$ 수축변형률을 나타내었으며 배합에 상관없이 습도와 변형률은 모두 강한 선형성을 보였다. 콘크리트 내부 습도 변화와 수축변형률의 관계를 보다 구체화하기 위하여 콘크리트 내부 공극을 단일 네트워크로 가정하고 확장 메니스커스 생성가정 하에 공극수에서 발생하는 모세관 압력과 수화조직체에서 발생하는 표면에너지 변화를 습도의 함수로 모델링하여 수축의 구동력으로 작용시킨 결과 실험값과 비교적 일치하는 값을 나타내었다. 이를 근거로 물-결합재비가 낮은 고성능 콘크리트에서 자기건조에 의한 습도감소는 20 nm 이하의 소형공극에서 발생함을 파악할 수 있었으며 따라서 자기수축에 대한 제어 방안은 이러한 소형공극에서의 공극수 표면장력과 포화도에 초점을 맞추어야 함을 확인할 수 있었다.

Keywords

References

  1. Weiss, W. J. and Shah, S. P., "Restrained Shrinkage Cracking : the Role of Shrinkage Reducing Admixtures and Specimen Geometry", Materials and Structures, Vol.35, 2002, pp.85-91 https://doi.org/10.1617/13799
  2. Jensen, O. M. and Lura, P., "Techniques and Materials for Internal Water Curing of Concrete", Materials and Structures, Vol.39, No.9, 2006, pp.817-825 https://doi.org/10.1617/s11527-006-9136-6
  3. Lura, P., Jensen, O. M., and Igarashi, S. I., "Experimental Observation of Internal Water Curing of Concrete", Materials and Structures, Vol.40, No.2, 2006, pp.211-220 https://doi.org/10.1617/s11527-006-9132-x
  4. Ribeiro, A. B., Goncalves A., and Carrajora, A., "Effect of Shrinkage Reducing Admixtures on the Pore Structures Properties of Mortars", Materials and Structures, Vol.39, No.2, 2006, pp.159-166
  5. Bazant, Z. P., "Constitutive Equations for Concrete Creep and Shrinkage Based on Thermodynamics of Multiphase Systems", Materials and Structures, Vol.3, No.13, 1970, pp.2-36
  6. Hansen, W., "Drying Shrinkage Mechanisms in Portland Cement Paste", Journal of American Ceramic Society, Vol.70, No.5, 1987, pp.323-331 https://doi.org/10.1111/j.1151-2916.1987.tb05002.x
  7. Ferraris, C. F., "Shrinkage Mechanisms of Hardened Cement Paste", Cement and Concrete Research, Vol.17, 1987, pp.453-464 https://doi.org/10.1016/0008-8846(87)90009-3
  8. Nikolai, V. C., Gerhard, S., and Jurge, A., "Isotherms of Capillary Condensation Influenced by Formation of Adsorption Films", Journal of Colloid and Interface Science, Vol.221, 2000, pp.246-253 https://doi.org/10.1006/jcis.1999.6592
  9. Maekawa K., Ishida T., and Kishi T., "Multi-scale Modeling of Concrete Performance Integrated Material and Structural Mechanics", Journal of Advanced Concrete Technology, Vol.1, No.2, 2003, pp.91-126 https://doi.org/10.3151/jact.1.91
  10. Klemen, K., Physics of Surfaces and Interfaces, GPL, 2005, pp.1-35
  11. Bazant, Z. P., "Thermodynamics of Hindered Adsorption and its Implication for Hardened Cement Paste and Concrete", Cement and Concrete Research, Vol.2, 1972, pp.1-16 https://doi.org/10.1016/0008-8846(72)90019-1
  12. Beltzung, F. and Wittmann, F. H., "Role of Disjoining Pressure in Cement Based Materials", Cement and Concrete Research, Vol.35, 2005, pp.2364-2370 https://doi.org/10.1016/j.cemconres.2005.04.004
  13. Radjy, F., "Moisture Transport in Microporous Substances", Journal of Materials Science, Vol.9, 1974, pp.744-752 https://doi.org/10.1007/BF00761794
  14. Garwin, D. and Schrefler B. A., "Thermo-Hydro-Mechanical Analysis of Partially Saturated Porous Materials", Engineering Computations, Vol.7, 1996, pp.113-143
  15. Persson, B., "Self-desiccation and its Importance in Concrete Technology", Materials and Structures, Vol.30, 1997, pp.293-305 https://doi.org/10.1007/BF02486354
  16. Lura, P., Jensen, O. M., and van Breugel, K., "Autogenous Shrinkage in High-Performance Cement Paste: an Evaluation of Basic Mechanisms", Cement and Concrete Research, Vol.33, 2003, pp.223-232 https://doi.org/10.1016/S0008-8846(02)00890-6
  17. Yang, Q. B. and Zhang, S. Q., "Self-Desiccation Mechanism of high-Performance Concrete", Journal of Zhejiang University Science, Vol.5, No.12, 2004, pp.1517-1523 https://doi.org/10.1631/jzus.2004.1517
  18. Jinag, Z., Sun, Z., and Wang, P., "Auotgenous Relative Humidity Cahnge and Autogenous Shrinkage of High-Performance Cement Paste", Cement and Concrete Research, Vol.35, 2005, pp.1539-1545 https://doi.org/10.1016/j.cemconres.2004.06.028
  19. Xi, Y., Bazant, Z. P., Molina, L., and Jennings, H. M., "Moisture Diffusion in Cementitious Materials", Advn. Cem. Bas. Mat., Vol.1, 1994, pp.258-266 https://doi.org/10.1016/1065-7355(94)90034-5
  20. Hua, C., Acker, P., and Ehrlacher, A., "Analysis and Models of the Autogenous Shrinkage of Hardening Cement Paste", Cement and Concrete Research, Vol.25, No.7, 1995, pp.1457-1468
  21. Kovler, K. and Zhutovsky, S., "Overview and Future Trends of Shrinkage Research", Materials and Structures, Vol.39, No.9, 2006, pp.827-847 https://doi.org/10.1617/s11527-006-9114-z
  22. Bentz, D. P., Garboczi, E. J., and Quenard, D. A., "Modeling of Drying Shrinkage in Reconstructed Porous Materials : Application to Porous Vicour Glass", Mod. Simul. Mat. Sci. Eng., Vol.6, 1998, pp.211-232 https://doi.org/10.1088/0965-0393/6/3/002
  23. Pane, I., Hydration Kinetics and Thermomechanics of Blended Cement Systems, Ph.D thesis, University of Michigan, 2001, pp.108-114
  24. CEB-FIP, CEB-FIP Model Code 90 for Concrete Structures, Comite Euro-International du Beton, Lausanne, 1990
  25. NISTIR 6295, Curing of High Performance Concrete: Report of the State of the art, United states Department of Commerce Technology Administration, 1999, pp.23-30
  26. Mindess, S., Young, J. F., and Darwin, D., Concrete, Prentice- Hall Inc., 2003, pp.75-76

Cited by

  1. Strength and Autogenous Shrinkage of High Strength Mortar Using Water Substituting Liquid vol.11, pp.6, 2011, https://doi.org/10.5345/JKIBC.2011.11.6.538
  2. Comparison on Characteristics of Concrete Autogenous Shrinkage according to Strength Level, Development Rate and Curing Condition vol.23, pp.6, 2011, https://doi.org/10.4334/JKCI.2011.23.6.741
  3. Autogeneous Shrinkage Characteristics of Ultra High Performance Concrete vol.23, pp.3, 2011, https://doi.org/10.4334/JKCI.2011.23.3.295