Effect of Natural Fiber Surface Treatments on the Interfacial and Mechanical Properties of Henequen/Polypropylene Biocomposites

  • Lee, Hyun-Seok (Polymer/Bio-Composites Research Lab., Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Dong-Hwan (Polymer/Bio-Composites Research Lab., Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Han, Seong-Ok (Nano Materials Research Center, Korea Institute of Energy Research)
  • Published : 2008.07.31

Abstract

The surfaces of henequen fibers, which can be obtained from the leaves of agave plants, were treated with two different media, tap water and sodium hydroxide, that underwent both soaking and ultrasonic methods for the fiber surface treatment. Various biocomposites were fabricated with untreated and treated, chopped henequen fibers and polypropylene using a compression molding method. The result is discussed in terms of interfacial shear strength, flexural properties, dynamic mechanical properties, and fracture surface observations of the biocomposites. The soaking (static method) and ultrasonic (dynamic method) treatments with tap water and sodium hydroxide at different concentrations and treatment times significantly influenced the interfacial, flexural and dynamic mechanical properties of henequen/polypropylene biocomposites. The alkali treatment was more effective than the water treatment in improving the interfacial and mechanical properties of randomly oriented, chopped henequen/PP bio-composites. In addition, the application of the ultrasonic method to each treatment was relatively more effective in increasing the properties than the soaking method, depending on the treatment medium and condition. The greatest improvement in the properties studied was achieved by ultrasonic alkalization of natural fibers, which was in agreement with the other results of interfacial shear strength, flexural strength and modulus, storage modulus, and fracture surfaces.

Keywords

References

  1. A. K. Mohanty, M. Misra, and G. Hinrichsen, Macromol. Mater. Eng., 276/277, 1 (2000)
  2. D. Cho, S. G. Lee, W. H. Park, and S. O. Han, Polym. Sci. Technol., 13, 460 (2002)
  3. A. K. Rana, A. Mandal, and S. Bandyopadhyay, Compos. Sci. Technol., 63, 801 (2003) https://doi.org/10.1016/S0266-3538(02)00267-1
  4. T. Nishino, K. Hirao, M. Kotera, K. Nakamae, and H. Inagaki, Compos. Sci. Technol., 63, 1281 (2003) https://doi.org/10.1016/S0266-3538(03)00099-X
  5. L. M. Arzondo, C. J. Perez, and J. M. Carella, Polym. Eng. Sci., 45, 613 (2005) https://doi.org/10.1002/pen.20299
  6. K. C. M. Nair, S. Thomas, and G. Groeninckx, Compos. Sci. Technol., 61, 2519 (2001) https://doi.org/10.1016/S0266-3538(01)00170-1
  7. Y. Pang, D. Cho, S. O. Han, and W. H. Park, Macromol. Res., 13, 453 (2005) https://doi.org/10.1007/BF03218480
  8. G. C. Yang, H. M. Zeng, and J. J. Li, Fiber Reinf. Plastics Compos., 3, 12 (1997)
  9. M. Aguilar-Vega and C. A. Cruz-Ramos, J. Appl. Polym. Sci., 58, 1245 (1995) https://doi.org/10.1002/app.1995.070580805
  10. G. Canche-Escamillar, J. Rodriguez-Laviada, J. I. Cauich-Cupul, E. Mendizabal, J. E. Puig, and P. J. Herrera-Franco, Composites Part A, 33, 539 (2002) https://doi.org/10.1016/S1359-835X(01)00136-1
  11. P. J. Herrera-Franco and A. Valadez-Gonzalez, Composites Part B, 36, 597 (2005) https://doi.org/10.1016/j.compositesb.2005.04.001
  12. S. O. Han, D. Cho, W. H. Park, and L. T. Drzal, Compos. Interfaces, 12(2/3), 231 (2006)
  13. C. K. Kum, Y. T. Sung, and Y. S. Kim, et al., Macromol. Res., 15, 308 (2007) https://doi.org/10.1007/BF03218792
  14. J. C. Kim and J. H. Chang, Macromol. Res., 15, 449 (2007) https://doi.org/10.1007/BF03218813
  15. A. C. N. Singleton, C. A. Baillie, P. W. R. Beaumont, and T. Peijs, Composites Part B, 34, 519 (2003) https://doi.org/10.1016/S1359-8368(03)00042-8
  16. A. K. Mohanty, M. Misra, and L. T. Drzal, Compos. Interfaces, 8, 313 (2001) https://doi.org/10.1163/156855401753255422
  17. L. Y. Mwaikambo and M. P. Ansell, Die Angew. Makromol. Chem., 272, 108 (1999) https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9
  18. S. Joseph, M. S. Sreekala, Z. Oommen, P. Koshy, and S. Thomas, Compos. Sci. Technol., 62, 1857 (2002) https://doi.org/10.1016/S0266-3538(02)00098-2
  19. A. Arbelaiz, G. Cantero, B. Fernandez, I. Mondragon, R. Ganan, and J. M. Kenny, Polym. Compos., 26, 324 (2005) https://doi.org/10.1002/pc.20097
  20. S.-H. Lee and S. Wang, Composites Part A, 37, 80 (2006) https://doi.org/10.1016/j.compositesa.2005.04.015
  21. X. Yuan, K. Jayaraman, and D. Bhattacharyya, J. Adhesion Sci. Technol., 18, 1027 (2004) https://doi.org/10.1163/1568561041257478
  22. D. Cho, S. M. Lee, S. G. Lee, and W. H. Park, Am. J. Appl. Sci., Special Issue (Bio-compat. Bio-compos. Mater.), 17 (2006)
  23. R. P. Brown, Ed., Handbook of Plastics Test Methods, 3rd Ed., Longman Scientific & Technical, London, 1998, Chapter 8
  24. D. Cho, S. B. Yoon, J. M. Seo, S. O. Han, and W. H. Park, Proc. (CD) 12th Int'l Conf. Compos. Eng./Nano (ICCE-12), August 1-6, Tenerife, Spain, 2005
  25. J. M. Seo, D. Cho, W. H. Park, S. O. Han, T. W. Hwang, C. H. Choi, S. J. Jung, and C. S. Lee, J. Biobased Mater. Bioenergy, 1, 331 (2007) https://doi.org/10.1166/jbmb.2007.007
  26. M. Z. Rong, M. Q. Zhong, Y. Liu, G. G. Yang, and H. M. Zheng, Compos. Sci. Technol., 61, 1437 (2001) https://doi.org/10.1016/S0266-3538(01)00046-X
  27. A. O'Donnell, M. A. Dweib, and R. P. Wool, Compos. Sci. Technol., 64, 1135 (2004) https://doi.org/10.1016/j.compscitech.2003.09.024