Synthesis and Surface Characteristics of Novel Oligomeric Silane with Perfluoropolyether

과불소 폴리에테르 포함 새로운 실란형 올리고머의 합성과 표면 특성

  • Park, Eun-Young (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Lee, Sang-Goo (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Ha, Jong-Wook (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Park, In-Jun (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Lee, Soo-Bok (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Lee, Yong-Taek (Department of Chemical Engineering, Chungnam National University)
  • 박은영 (한국화학연구원 바이오리파이너리센터) ;
  • 이상구 (한국화학연구원 바이오리파이너리센터) ;
  • 하종욱 (한국화학연구원 바이오리파이너리센터) ;
  • 박인준 (한국화학연구원 바이오리파이너리센터) ;
  • 이수복 (한국화학연구원 바이오리파이너리센터) ;
  • 이용택 (충남대학교 화학공학과)
  • Published : 2008.07.31

Abstract

Perfluoropolyether(PFPE) has been widely applied in industry because of its very excellent properties of very high contact angle and low surface energy, good lubricant property and antifouling property. But the difficulty to synthesize PFPE has limited the research on this field. In this study, the novel silicon-containing oligomer with perfluoropolyether moiety was synthesized, and the structure was characterized by $^{19}F$-NMR and $^1H$-NMR. The surface properties of contact angle, sliding angle, and soil release property were investigated. The results show that PFPE in this study can be utilized as an anti-smudge coating material because it shows lower sliding angle and better soil release property than commercial products.

과불소 에테르 화합물(PFPE)은 높은 접촉각 및 낮은 표면에너지, 우수한 윤활제 성질과 방오성의 특성을 가지고 있어 산업적으로 많은 관심을 받아왔다. 반면에, 합성단계의 복잡성과 위험성을 갖고 있어 많은 연구가 되어 오지 못했다. 본 연구에서는 과불소 폴리에테르 올리고머 형태의 새로운 실란화합물을 합성하고 $^{19}F$-NMR 및 $^1H$-NMR을 통하여 구조분석 하였다. 또한 코팅필름의 접촉각 및 흐름각, 내오염성 등 표면 특성을 조사하였다. 그 결과, 기존의 방오성 필름보다 낮은 흐름각과 우수한 내오염성의 특징을 보여 방오성 필름 코팅 제로서 산업적 가능성을 확인하였다.

Keywords

References

  1. J.-W. Ha, I. J. Park, S.-B. Lee, and D.-K. Kim, Macromolecules, 35, 6811 (2002) https://doi.org/10.1021/ma011692u
  2. D.-H. Jung, I. J. Park, Y. K. Choi, S.-B. Lee, H. S. Park, and J. Ruhe, Langmuir, 18, 6133 (2002) https://doi.org/10.1021/la025558u
  3. J.-W. Ha, I. J. Park, and S.-B. Lee, Macromolecules, 38, 736 (2005) https://doi.org/10.1021/ma0488764
  4. S.-M. Ahn, J.-W. Ha, J. H. Kim, Y.-T. Lee, and S.-B. Lee, J. Membrane Sci., 247, 51 (2005) https://doi.org/10.1016/j.memsci.2004.09.005
  5. K. Itoh, S. Kozakai, Y. Hida, H. Okinochina, F. Okada, T. Oba, H. Shimizu, Y. Hinoto, and H. Yoshioka, U.S. Patent 4,678,688 (2001)
  6. H. Soichiro and H. Osamu, JP. Patent 233535 (1990)
  7. E. K. Kim, E. Y. Park, K. W. Lee, S. G. Lee, J-W. Ha, I. J. Park, and S-B. Lee, KR. Patent 0008239 (2008)
  8. T. Kako, A. Nakajima, H. Irie, A. Kato, K. Uematsu, T. Watanabe, and K. Hashimoto, J. Mater. Sci., 39, 547 (2004) https://doi.org/10.1023/B:JMSC.0000011510.92644.3f
  9. S. Wu, Polymer Interface and Adhesion, Marcel Edkker, New York, Chap. 5 (1982)
  10. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, Langmuir, 15, 4321 (1999) https://doi.org/10.1021/la981727s
  11. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, Langmuir, 16, 5754 (2000) https://doi.org/10.1021/la991660o
  12. M. Kiuru and E. Alakoski, Mater. Lett., 58, 2213 (2004) https://doi.org/10.1016/j.matlet.2004.01.024
  13. S. Suwuki, A. Nakajima, Y. Kameshima, and K. Okada, Surface Sci., 557, L163 (2004) https://doi.org/10.1016/j.susc.2004.02.029
  14. F. Schreiber, Physica B, 16, R881 (2004)
  15. A. Buzagh and E. Wolfram, Kolloid A, 149, 125 (1956)
  16. H. Murase, Proceedings of the Fifth Interface Metting of the Science Council of Japan, Tokyo, 1998