Recent Advances in Nuclear Medicine Imaging Instrumentation

핵의학 영상기기의 최근 진보

  • Jung, Jin-Ho (Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center) ;
  • Choi, Yong (Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center) ;
  • Hong, Key-Jo (Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center) ;
  • Min, Byung-Jun (Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center) ;
  • Hu, Wei (Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center) ;
  • Kang, Ji-Hoon (Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center)
  • 정진호 (성균관대학교 의과대학, 삼성서울병원 핵의학과) ;
  • 최용 (성균관대학교 의과대학, 삼성서울병원 핵의학과) ;
  • 홍기조 (성균관대학교 의과대학, 삼성서울병원 핵의학과) ;
  • 민병준 (성균관대학교 의과대학, 삼성서울병원 핵의학과) ;
  • 호위 (성균관대학교 의과대학, 삼성서울병원 핵의학과) ;
  • 강지훈 (성균관대학교 의과대학, 삼성서울병원 핵의학과)
  • Published : 2008.04.30

Abstract

This review introduces advances in clinical and pre-clinical single photon emission computed tomography (SPECT) and positron emission tomography (PET) providing noninvasive functional images of biological processes. Development of new collimation techniques such as multi-pinhole and slit-slat collimators permits the improvement of system spatial resolution and sensitivity of SPECT. Application specific SPECT systems using smaller and compact solid-state detector have been customized for myocardial perfusion imaging with higher performance. Combined SPECT/CT providing improved diagnostic and functional capabilities has been introduced. Advances in PET and CT instrumentation have been incorporated in the PET/CT design that provide the metabolic information from PET superimposed on the anatomic information from CT. Improvements in the sensitivity of PET have achieved by the fully 3D acquisition with no septa and the extension of axial field-of-view. With the development of faster scintillation crystals and electronics, time-of-flight (TOF) PET is now commercially available allowing the increase in the signal-to-noise ratio by incorporation of TOF information into the PET reconstruction process. Hybrid PET/SPECT/CT systems has become commercially available for molecular imaging in small animal models. The pre-clinical systems have improved spatial resolution using depth-of-interaction measurement and new collimators. The recent works on solid state detector and dual modality nuclear medicine instrumentations incorporating MRI and optical imagers will also be discussed.

Keywords

References

  1. Madsen MT. Recent advances in SPECT imaging. J Nucl Med 2007;48:661-73 https://doi.org/10.2967/jnumed.106.032680
  2. Kim JG, Choi Y, Song TY, Jung JH, Min BJ, Hong KJ, et al. Feasibility test performed with silicon photomultiplier as gamma ray imaging sensor. IEEE MIC 2006;M14-90
  3. Fiorini C. A small prototype of LSO-SDD anger camera. IEEE Trans Nucl Sci 2004;51:1625-30 https://doi.org/10.1109/TNS.2004.832619
  4. Furenlid LR, Wilson DW, Chen Y-C, Kim H, Pietraski PJ, Crawford MJ, et al. FastSPECT II: A second-generation high-resolution dynamic SPECT imager IEEE Trans Nucl Sci 2004;51:631-5 https://doi.org/10.1109/TNS.2004.830975
  5. Jung JH, Choi Y, Song TY, Jung YH, Jung MH, Hong KJ, et al. A computer simulation for small animal Iodine-125 SPECT development. Kor J Nucl Med 2004;38:74-84
  6. Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 2008;29:193-207 https://doi.org/10.1097/MNM.0b013e3282f3a515
  7. Qi J, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol 2006;51:R541-R578 https://doi.org/10.1088/0031-9155/51/15/R01
  8. Defrise M, Gullberg GT. Image reconstruction. Phys Med Biol 2006; 51:R139-54 https://doi.org/10.1088/0031-9155/51/13/R09
  9. Bruyant PP. Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 2002;43:1343-58
  10. Townsend DW. Multimodality imaging of structure and function. Phys Med Biol 2008;53:R1-39 https://doi.org/10.1088/0031-9155/53/1/001
  11. O'Connor MK, Kemp BJ. Single-photon emission computed tomography/ computed tomography: basic instrumentation and innovations. Semin Nucl Med 2006;36:258-66 https://doi.org/10.1053/j.semnuclmed.2006.05.005
  12. Schillaci O. Hybrid SPECT/CT: a new era for SPECT imaging? Eur J Nucl Med Mol Imaging 2005;32:521-4 https://doi.org/10.1007/s00259-005-1760-9
  13. Hasegawa BH, Iwata K, Wong KH, Wu MC, Da Silva AJ, Tang HR, et al. Dual-modality imaging of function and physiology. Acad Radiol 2002;9:1305-21 https://doi.org/10.1016/S1076-6332(03)80564-0
  14. Wernick MN, Aarsvold JN, eds. Emission Tomography: The Fundamentals of SPECT and PET. 1st ed. San Diego, CA. Elsevier; 2004:443-72
  15. Beekman F, van der Have F. The pinhole: gateway to ultra-highresolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging 2007;34:151-61 https://doi.org/10.1007/s00259-006-0248-6
  16. Song TY, Choi Y, Jung JH, Min BJ, Hong KJ, Choe YS, et al. Performance vamelioration for small animal SPECT using optimized pinhole collimator and image correction technique. IEEE Trans Nucl Sci 2005;52:1396-400 https://doi.org/10.1109/TNS.2005.858265
  17. Song TY, Choi Y, Chung YH, Jung JH, Choe YS, Lee K-H, et al. Optimization of pinhole collimator for small animal SPECT using Mote Carlo simulation. IEEE Trans Nucl Sci 2003;50:327-32 https://doi.org/10.1109/TNS.2003.812448
  18. Vastenhouw B, Beekman F. Submillimeter total-body murine imaging with U-SPECT-I. J Nucl Med 2007;48:487-93
  19. Moore SC, Zimmerman RE, Mahmood A, Mellen R, Lim CB. A triple-detector multi-pinhole system for SPECT imaging of rodents. J Nucl Med 2005;45:97P
  20. Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High- resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 2003;50: 315-20 https://doi.org/10.1109/TNS.2003.812437
  21. Novak JR, Ayan AS, Accorsi R, Metzler SD. Verification of the sensitivity and resolution dependence on the incidence angle for slit-slat collimation. Phys Med Biol 2008;53:953-66 https://doi.org/10.1088/0031-9155/53/4/009
  22. Metzler SD, Accorsi R, Novak JR, Ayan AS, Jaszczak RJ. On-axis sensitivity and resolution of a slit-slat collimator. J Nucl Med 2006;47:1884-90
  23. Bailey DL, Roach PJ, Bailey EA, Hewlett J, Keijzers R. Development of a cost-effective modular SPECT/CT scanner. Eur J Nucl Med Mol Imaging 2007; 34:1415-26 https://doi.org/10.1007/s00259-006-0364-3
  24. Patton JA, Sandler MP, Berman D. D-SPECT: a new solid state camera for high speed molecular imaging. J Nucl Med 2006;47: 189P
  25. Townsend DW. Multimodality imaging of structure and function. Phys Med Biol 2008;53:R1-39 https://doi.org/10.1088/0031-9155/53/1/001
  26. Zaidi H, Alavi A. Current trends in PET and combined (PET/CT and PET/MR) systems design. PET Clinics 2 2007;2:109-23 https://doi.org/10.1016/j.cpet.2007.10.004
  27. Hasegawa B, Zaidi H. Dual-modality imaging: more than the sum of its components. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer 2006;35-81
  28. Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 2007;48:78S-88S
  29. Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369-79
  30. Strobel K, Rudy M, Treyer V, Veit-Haibach P, Burger C, Hany TF. Objective and subjective comparison of standard 2-D and fully 3-D reconstructed data on a PET/CT system. Nucl Med Commun 2007;28:555-9 https://doi.org/10.1097/MNM.0b013e328194f1e3
  31. Kemp BJ, Kim C, Williams JJ, Ganin A, Lowe VJ, National Electrical Manufacturers Association (NEMA). NEMA NU 2-2001 performance measurements of an LYSO-based PET/CT system in 2D and 3D acquisition modes. J Nucl Med 2006;47:1960-7
  32. Lodge MA, Badawi RD, Gilbert R, Dibos PE, Line BR. Comparison of 2-dimensional and 3-dimensional acquisition for 18F-FDG PET oncology studies performed on an LSO-based scanner. J Nucl Med 2006;47:23-31
  33. Townsend DW. From 3-D positron emission tomography to 3-D positron emission tomography/computed tomography: what did we learn?. Mol Imaging Biol 2004;6:275-90 https://doi.org/10.1016/j.mibio.2004.06.003
  34. Townsend DW. Isoardi RA and Bendriem B. Volume imaging tomographs The Theory and Practice of 3D PET ed B Bendriem and D W Townsend (Dordrecht: Kluwer) 1998;111-32
  35. Choi Y, Lee JR, The principle and application of positron emission tomography (PET). Kor J Nucl Med Tech 1996;1:26-34
  36. Choi Y, Lee JR, Kim SE, Lee KH, Choe YS, Chi DY, et al. Consideration for clinical application in three-dimensional positron emission tomography (3D PET). Kor J Nucl Med 1995;29:440
  37. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of- flight in PET: experimental and clinical results. J Nucl Med 2008;49:462-70 https://doi.org/10.2967/jnumed.107.044834
  38. Moses WW. Prospects for Time-of-Flight PET using LSO Scinillator. IEEE Trans Nucl Sci 1999;46:474-8 https://doi.org/10.1109/23.775565
  39. Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med 1983;24:73-8
  40. Lewellen TK. Time-of-flight PET. Semin Nucl Med 1998;28:268-75
  41. Gleason SS, Austin DW, Beach RS, Nutt R, Paulus MJ, Yan S. A new highly versatile multimodality small animal imaging platform. IEEE MIC Rec 2006; M11-67
  42. Austin DW, Paulus MJ, Gleason SS, Mintzer RA, Siegel SB, Figueroa SD, et al. Design and performance of a new SPECT detector for multimodality small animal imaging platforms. IEEE MIC Rec 2006;M14-63
  43. Mintzer RA, Siegel SB. Design and performance of a new pixelated LSO/PSPMT gamma-ray detector for high resolution PET imaging. IEEE MIC Rec 2007; M18-142
  44. Wagenaar DJ, Zhang J, Kazules T, Vandehei T, Bolle E, Chowdhury S, et al. In vivo dual-isotope SPECT imaging with improved energy resolution. IEEE MIC Rec 2006;MR1-3
  45. Xie S, Ramirez R, Liu Y, Xing T, Uribe J, Li H, et al. A pentagon photomultiplier-quadrant-sharing BGO detector for a rodent research PET (RRPET). IEEE Trans Nucl Sci 2005;52:210-6 https://doi.org/10.1109/TNS.2004.843093
  46. Murayama H, Ishibashi H, Uchidat H, Omura T, Yamashita T. Design of a depth of interaction detector with a PS-PMT for PET. IEEE Trans Nucl Sci 2000;47:1045-50 https://doi.org/10.1109/23.856545
  47. Seidel J, Vaquero JJ, Siegel S, Gandler WR, Green MV. Depth identification accuracy of a three layer phoswich PET detector module. IEEE Trans Nucl Sci 1999;46:485-90 https://doi.org/10.1109/23.775567
  48. Sempere RP, Chereul E, Dietzel O, Magnier L, Pautrot C, Rbah L, et al. Raytest ClearPETTM, a new generation small animal PET scanner. Nucl Instr Meth 2007; A571:498-501
  49. Jung JH, Choi Y, Chung YH, Devroede O, Krieguer M, Bruyndonckx P, et al. Optimization of LSO/LuYAP phoswich detector for small animal PET. Nucl Instr Meth 2007;A571:669-75
  50. Chung YH, Choi Y, Cho G, Choe YS, Lee K-H, Kim B-T. Optimization of dual layer phoswich detector consisting of LSO and LuYAP for small animal PET. IEEE Transactions on Nuclear Science 2005;52:217-21 https://doi.org/10.1109/TNS.2005.843618
  51. Chung YH, Choi Y, Cho G, Choe YS, Lee K-H, Kim B-T. Characterization of dual layer phoswich detector performances for small animal PET using Monte Carlo simulation. Phys Med Biol 2004;49: 2881-90 https://doi.org/10.1088/0031-9155/49/13/008
  52. Auffraya E, Bruyndonckx P, Devroede O, Fedorov A, Heinrichs U, Korjik M, et al. The ClearPET project. Nucl Instr Meth 2004;A527: 171-4
  53. Wang Y, Seidel J, Tsui B, Vaquero JJ, Pomper MG. Performance evaluation of the GE Healthcare eXplore VISTA dual-ring smallanimal PET scanner. J Nucl Med 2006;47:1891-900
  54. Fontaine R, Belanger F, Viscogliosi N, Semmaoui H, Tetrault MA, Michaud JB, et al. The architecture of LabPETTM, a small animal APD-based digital PET scanner. IEEE NSS-MIC Rec 2005;J02-3
  55. Song TY, Mosset JB, Loude JF, Choi Y, Morel C. Characterization of two deep-diffusion avalanche photodiode array prototypes with different optical coatings. IEEE Trans Nucl Sci 2004;51:2279-83 https://doi.org/10.1109/TNS.2004.832676
  56. Ziegler SI, Pichler BJ, Boening G, Rafecas M, Pimpl W, Lorenz E, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 2001;28:136-43 https://doi.org/10.1007/s002590000438
  57. Lecomte R, Cadorette J, Rodrigue S, Lapointe D, Rouleau D, Bentourkia M, et al. Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci 1996;43: 1952-7 https://doi.org/10.1109/23.507252
  58. Hammer BE, Christensen NL, Heil BG. Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys 1994;21:1917- 20 https://doi.org/10.1118/1.597178
  59. Buchanan M, Marsden PK, Mielke CH, Garlick PB, et al. A system to obtain radiotracer uptake data simultaneously with NMR spectra in a high field magnet. IEEE Trans Nucl Sci 1996;43:2044-8 https://doi.org/10.1109/23.507266
  60. Shao Y, Cherry SR, Faranhani K, Slates R, Silvermax RW, Meadors K, et al. Development of a PET detector system compatible with MRI/NMR system. IEEE Trans Nucl Sci 1997;144:1167-71
  61. Yamamoto S, Kuroda K, Senda M. Development of an MR- compatible gamma probe for combined MRI guided surgery. Phys Med Biol 2004;149:3379-88
  62. Burbar Z, Grazioso RF, Corbeil J, Zhang N, Paul R, Byars L, et al. PET performance of MR/PET brain insert tomograph. IEEE MIC Rec 2006;M08-8
  63. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: Initial results with a MR- compatible PET scanner, J Nucl Med 2006; Vol. 47:1968-76
  64. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006;47:639-47
  65. Grazioso R, Zhanga N, Corbeil J, Schmand M, Ladebeck R, Vester M, et al. APD-based PET detector for simultaneous PET/MR imaging. Nucl Instr Meth 2006;A569:301-5
  66. Herbert DJ, Saveliev V, Belcari N, D'Ascenzo N, Guerra AD, Alexei Golovin. First results of scintillator readout with silicon photomultiplier. IEEE Trans Nucl Sci 2006;53:389-94 https://doi.org/10.1109/TNS.2006.869848
  67. Kim JG, Choi Y, Song TY. Jung JH, Min BJ, Hong KJ. Feasibility Test Performed with Silicon Photomultiplier as Gamma Ray Imaging Sensor. IEEE MIC Rec 2006;M14-90
  68. Kovaltchouk VD, Lolos GJ, Papandreou Z and Wolbaum K. Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier. Nucl Instr Meth 2005;A538:408-15
  69. Otte AN, Barral J, Dolgoshein B, Hose J, Klemin S and Lorenz E, et al. New results from a test of silicon photomultiplier as readout for PET. IEEE NSS Rec 2004;6:3738-42
  70. Golovin V, Saveliev V. Novel type of avalanche photodetector with Geiger mode operation. Nucl Instr Meth 2004;A518:560-5
  71. Lee JS, Ito M, Sim KS, Hong BS, Lee KS, Muhammad J. Investigation of solid state photomultipliers for positiron emission tomography scanners. J Korean Phys Soc 2007;50:1332-9 https://doi.org/10.3938/jkps.50.1332
  72. Autiero M, Celentano L, Cozzolino R, Laccetti P, Marotta M, Mettivier G, et al. Experimental study on in vivo optical and radionuclide imaging in small animals. IEEE Trans Nucl Sci 2005;52: 205-9 https://doi.org/10.1109/TNS.2004.843095
  73. Peter J, Unholtz D, Schulz RB, Doll J, Semmler W. Development and initial results of a tomographic dual-modality positron/optical small animal imager. IEEE Trans Nucl Sci 2007;54:1553-60 https://doi.org/10.1109/TNS.2007.902359
  74. Jung JH, Choi Y, Hong KJ, Min BJ, Park S, Choi JY, Choe YS. Detector design for combined Optical/SPECT using a positionsensitive PMT. IEEE MIC Rec 2007;M19-111
  75. Prout DL, Silverman RW, Chatziioannou A. Detector concept for OPET-a combined PET and optical imaging system. IEEE Trans Nucl Sci 2004;51:752-6 https://doi.org/10.1109/TNS.2004.829736