Monte Carlo Simulation Codes for Nuclear Medicine Imaging

핵의학 영상연구를 위한 몬테칼로 모사코드

  • Chung, Yang Hyun (Department of Radiological Science, Yonsei University College of Health Science) ;
  • Beak, Cheal-Ha (Department of Radiological Science, Yonsei University College of Health Science) ;
  • Lee, Seung-Jae (Department of Radiological Science, Yonsei University College of Health Science)
  • 정용현 (연세대학교 보건과학대학 방사선학과) ;
  • 백철하 (연세대학교 보건과학대학 방사선학과) ;
  • 이승재 (연세대학교 보건과학대학 방사선학과)
  • Published : 2008.04.30

Abstract

Monte Carlo simulation methods are especially useful in studying a variety of problems difficult to calculate by experimental or analytical approaches. Nowadays, they are extensively applied to simulate nuclear medicine instrumentations such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) for assisting system design and optimizing imaging and processing protocols. The goal of this paper is to address the practical issues, a potential user of Monte Carlo simulations for nuclear medicine can encounter, to help them to choose a code. This review introduces the different types of Monte Carlo codes currently available for nuclear medicine, comments main features and properties for a code to be proper for a given purpose, and discusses current research trends in Monte Carlo codes.

Keywords

References

  1. McCracken DD, The Monte Carlo method, Sci Am 1955:192;90-6 https://doi.org/10.1038/scientificamerican0555-90
  2. Raeside DE, Monte Carlo principles and applications, Phys Med Biol 1976:21;181-97 https://doi.org/10.1088/0031-9155/21/2/001
  3. Andreo P, Monte Carlo techniques in medical radiation physics, Phys Med Biol 1991:36;861-920 https://doi.org/10.1088/0031-9155/36/7/001
  4. Turner JE, Wright HA, Hamm RN, A Monte Carlo primer for health physicists, Health Phys 1985:48;717-33 https://doi.org/10.1097/00004032-198506000-00001
  5. Murray D, Using EGS4 Monte Carlo in meical radiation physics, Australas Phys Eng Sci Med 1990:13;132-47
  6. Ljungberg M, Strand SE, A Monte Carlo program for the simulation of scintillation camera characteristics, Compute Methods Prog Biomed 1989:29;257-72 https://doi.org/10.1016/0169-2607(89)90111-9
  7. Yanch JC, Dobrzeniecki AB, Ramanathan C, Behrman R, Physically realistic Monte Carlo simulation of source collimator and tomographic data acquisition for emission computed tomography, Phys Med Biol 1992:37;853-70 https://doi.org/10.1088/0031-9155/37/4/003
  8. Dahlbom M, MacDonald LR, Schmand M, Eriksson L, Andreaco M, Williams C, A YSO/LSO phoswich array detector for single and coincidence photon imaging, IEEE Trans Nucl Sci 1998:45;1128-32 https://doi.org/10.1109/23.681990
  9. Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BM, Yester M, Quantitative SPECT imaging: a review and recommendations by the focus committee of the society of nuclear medicine computer and instrumentation council, J Nucl Med 1995:36;1489-513
  10. Zaidi H, Quantitative SPECT: Recent developments in detector response, attenuation and scatter correction techniques, Phys medica 1996:12;101-17
  11. Buvat I, Castiglioni I, Monte Carlo simulations in SPET and PET, QJ Nucl Med 2002:46;48-61
  12. Zaidi H, Relevance of accurate Monte Carlo modeling in nuclear medical imaging, Med Phys 1999:26;574-608 https://doi.org/10.1118/1.598559
  13. Beck JW, Analysis of a camera based single-photon emission computed tomography (SPECT) system, Thesis; University of Duke, University Microfilms, Ann Arbor, MI, 1982
  14. de Vries DJ, Moore SC, Zimmerman RE, Mueller SP, Friedland B, Lanza RC, Development and validation of a Monte Carlo simulation of photon transport in an Anger camera, IEEE Trans Med Imaging 1990:9;430-8 https://doi.org/10.1109/42.61758
  15. Zubal IG, Harrell CR, Esser PD, Monte Carlo determination of emerging energy spectra for diagnostically realistic radiopharmaceutical distributions, Nucl Instr Meth Phys Res A 1990:299;544-7 https://doi.org/10.1016/0168-9002(90)90840-3
  16. Ivanovic M, Weber DA, Monte Carlo simulation code for SPECT imaging of uniform and nonuniform media and source distribution, Nuclear Medicine in Research and Practice 1992:28;60-3
  17. Furhang EE, Chui CC, Kolbert KS, Larson SM, Sgouros G, Implementation of a Monte Carlo dosimetry method for patientspecific internal emitter therapy, Med Phys 1997:24;1163-72 https://doi.org/10.1118/1.598018
  18. Stabin MG, MIRDOSE: personal computer software for internal dose assessment in nuclear medicine, Nucl Med Biol 1996:37;538-46
  19. Tagesson M, Ljungberg M, Strand SE, A Monte Carlo program converting activity distributions to absorbed dose distributions in a radionuclide treatment planning system, Acta Oncol 1996:35;367-72 https://doi.org/10.3109/02841869609101653
  20. Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, et al. Implementation and evaluation of patient-specific threedimensional internal dosimetry, J Nucl Med 1997:38;301-8
  21. Ljungberg M, Strand SE, King MA, Monte Carlo Calculations in Nuclear Medicine: Applications in Diagnostic Imaging, 1998:IOP Publishing
  22. Nelson WR, Hirayama H, Rogers DWO, The EGS4 code system, Stanford Linear Accelerator Center 1985:SLAC-256
  23. Halbleib JA, Kensek RP, Valdez GD, Seltzer SM, Berger MJ, ITS: The Integrated TIGER Series of electron/photon transport codes-version 3.0, IEEE Trans Nucl Sci 1992:39;1025-30 https://doi.org/10.1109/23.159753
  24. Briesmeister JF, MCNP--A general Monte Carlo code for neutron and photon transport, Version 3A, Los Alamos National Laboratory 1997:LA-12625-M
  25. Brun R, Bruyant F, Maire M, McPherson AC, Zanarini P, GEANT3, CERN 1987:DD/EE/84-1
  26. Yanch JC, Dobrzeniecki AB, Monte Carlo simulation in SPECT: Complete 3-D modeling of source, collimator and tomographic data acquisition, IEEE Trans Nucl Sci 1993:40;198-203 https://doi.org/10.1109/23.212341
  27. Smith MF, Modelling photon transport in non-uniform media for SPECT with a vectorized Monte Carlo code, Phys Med Biol 1993:38;1459-74 https://doi.org/10.1088/0031-9155/38/10/007
  28. Smith MF, Floyd CE, Jaszczak RJ, Coleman RE, Three dimensional photon detection kernels and their application to SPECT reconstruction, Phys Med Biol 1992:3;605-22
  29. Thompson CJ, Cantu JM, Picard Y, PETSIM: Monte Carlo program simulation of all sensitivity and resolution parameters of cylindrical positron imaging systems, Phys Med Biol 1992:37;731-49 https://doi.org/10.1088/0031-9155/37/3/017
  30. Picard Y, Thompson CJ, Marrett S, Improving the precision and accuracy of Monte Carlo simulation in positron emission tomography, IEEE Trans Nucl Sci 1992:39;1111-6 https://doi.org/10.1109/23.159769
  31. Zaidi H, Labbe C, Morel C, EIDOLON: Implementation of an environment for Monte Carlo simulation of fully 3D positron tomography on a high-performance parallel platform, Parallel Comput 1998:24;1523-31 https://doi.org/10.1016/S0167-8191(98)00069-6
  32. Castiglioni I, Cremonesi O, Gilardi MC, Bettinardi V, Rizzo G, Savia et al. Scatter correction techniques in 3D PET: a Monte Carlo evaluation, IEEE Trans Nucl Sci 1999:46;2053-8 https://doi.org/10.1109/23.819282
  33. SimSET homepage:
  34. Harrison RL, Vannoy SD, Haynor DR, Gillipsie SB, Kaplan MS, Lewellen TK, Preliminary experience with the photon history generator module of a public-domain simulation system for emission tomography, IEEE MIC Rec 1993:1154-8
  35. Sempau J, Acosta E, Baro J, Fernandez-Varea JM, Salvat F, An algorithm for Monte Carlo simulation of coupled electron-photon transport, Nucl Instr Meth Phys Res B 1997:132;377-90 https://doi.org/10.1016/S0168-583X(97)00414-X
  36. Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT, Phys Med Biol 2004:49;4543-61 https://doi.org/10.1088/0031-9155/49/19/007
  37. Hoffman ES, Cutler PD, Digby Wm, Mazziotta JD, 3D phantom to simulate cerebral blood flow and metabolic images for PET, IEEE Trans Nucl Sci 1990:37;616-20 https://doi.org/10.1109/23.106686
  38. Zubal IG, Harrell CR, Smith E, Computerized 3D segmented human anatomy, Med Phys 1994:21;299-302 https://doi.org/10.1118/1.597290
  39. Moszynski M, Ludziejewski T, Wolski D, Klamra W, Avdejchikov VV, Timing properties of GSO, LSO and other Ce doped scintillators, Nucl Instr Meth Phys Res A 1996:372;51-8 https://doi.org/10.1016/0168-9002(95)01244-3
  40. Holdsworth Ch, Levin CS, Farquhar TH, Dalhbom M, Hoffman EJ, Investigatin of accelerated Monte Carlo techniques for PET simulation and 3D PET scatter correction, IEEE Trans Nucl Sci 2000:48;74-81 https://doi.org/10.1109/23.910835
  41. Askew CR, Monte Carlo simulation on transputer arrays, J Parall Comp 1988:6;247-58 https://doi.org/10.1016/0167-8191(88)90089-0
  42. DeVol TA, Moses WW, Derenzo SE, Monte Carlo optimization of depth of interaction resolution in PET crystals, IEEE Trans Nucl Sci 1993:40;170-4 https://doi.org/10.1109/23.212336
  43. Kimiaei S, Larsson SA, Optimal design of planar concave collimators for SPECT: an analytical approach, Phys Med Biol 1998:43;637-50 https://doi.org/10.1088/0031-9155/43/3/015
  44. El Fakhri G, Buvat I, Pelegrini M, Benali H, Almeida P, Bendriem B et al. Respective roles of scatter, attenuation, depth dependent collimator response and finite spatial resolution in cardiac SPECT quantitation: a Monte Carlo study, Eur J Nucl Med 1999:26;437-46 https://doi.org/10.1007/s002590050409
  45. Watson CC, Newport D, Casey ME, deKemp A, Beanlands RS, Schmand M, Evaluation of simulation based scatter correction for 3D PET cardiac imaging, IEEE Trans Nucl Sci 1997:44;90-7 https://doi.org/10.1109/23.554831
  46. Gifford HC, King MA, de Vries DJ, Soares EJ, Channelized hotelling and hyman observer correlation for leison detection in hepatic SPECT imaging, J Nucl Med 2000:41;514-21
  47. Harrison RL, Alessio AM, Kinahan PE, Lewellen TK, Signal to noise ratio in simulations of time-of-flight positron emission tomography, IEEE MIC Rec 2004:7;4080-3
  48. Staelens S, Strul D, Santin G, Vandenberghe S, Koole M, D'Asseler Y, et al., Monte Carlo simulations of a scintillation camera using GATE: validation and application modelling. Phys Med Biol 2003:48; 3021-42 https://doi.org/10.1088/0031-9155/48/18/305
  49. Santin G, Strul D, Lazaro D, Simon L, Krieguer M, Martins M.V, et al., GATE: a Geant4-based simulation platform for PET and SPECT integrating movement and time management, IEEE Trans Nucl Sci 2003:50;1516-21 https://doi.org/10.1109/TNS.2003.817974
  50. Groiselle CJ, Glick SJ, 3D PET list-mode iterative reconstruction using time-of-flight information, IEEE MIC Rec 2004:4;2633-38
  51. Buvat I, Castiglioni I, Feuardent J, Gilardi MC, Unified description and validation of Monte Carlo simulators in PET, Phys Med Biol 2005:50;329-46 https://doi.org/10.1088/0031-9155/50/2/011
  52. Rannou FR, Chatziioannou AF, Fully 3D system model estimation of OPET by Monte Carlo simulation, IEEE MIC Rec 2004:6;3433-6
  53. Ljungberg M, Frey E, Sjogreen K, Liu X, Dewaraja Y, Strand SE, 3D absorbed dose calculations based on SPECT: evaluation for 111-In/90-Y therapy using Monte Carlo simulations, Cancer Biotherapy & Radiopharmaceuticals 2003:18;99-107 https://doi.org/10.1089/108497803321269377
  54. Taschereau R, Chatziioannou AF, FDG-PET image-based dose distribution in a realistic mouse phantom from Monte Carlo simulations, IEEE MIC Rec 2005:3;1633-6
  55. Spyrou G, Tzanaka G, Bakas A, Panayiotakis G, Monte Carlo generated mammograms: development and validation, Phys Med Biol 1998:43;3341-57 https://doi.org/10.1088/0031-9155/43/11/012
  56. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al., Effect of respiratory gating on quantifying PET images of lung cancer, J Nucl Med 2002:43;876-81