A Study on the Extension of WAM for Shallow Water

WAM모형의 천해역 확장에 관한 연구

  • Chun, Je-Ho (Institue of Construction and Environmental Research, Handong Global University) ;
  • Ahn, Kyung-Mo (School of Spatial Environment System Engineering, Handong Global University) ;
  • Yoon, Jong-Tae (Department of Civil Engineering, Kyungsung University)
  • 천제호 (한동대학교 건설환경연구소) ;
  • 안경모 (한동대학교 공간환경시스템공학부) ;
  • 윤종태 (경성대학교 토목공학과)
  • Published : 2008.04.30

Abstract

WAM(WAve Model), deep water wave model has been extended to the region of shallow water, incorporating wave breaking, and triad wave interaction. To verify this model, two numerical simulations for hydraulic experiments of Chawla et al.(1998) and Beji and Battjes(1993) are performed. The computed results show good agreements with measured ones. To identify its applicability to real sea, it is applied to storm wave modelling for typhoon Maemi. Numerical results compared with measured ones at Geoje, Busan and Ulsan show reasonable wave height estimations.

심해역 파랑모형인 WAM에 쇄파와 삼파 상호작용을 추가하여 모형의 적용영역을 천해역으로 확장하였다. 확장된 모형의 검증을 위해 Chawla et al.(1998) 과 Beji and Battjes(1993)의 수리모형 실험에 본 모형을 적용하여 천해역에서의 파랑변형 및 비선형 3파 상호작용의 수치모의 기능을 확인하였고, 계산된 수치모의 결과들은 수리실험의 계측결과와 잘 일치하였다. 그리고 실제 해역에서의 적용성을 검토하기 위해 태풍 매미에 대한 파랑 모의에 적용하였고, 계산 결과를 거제, 부산, 울산에서의 관측치와 비교하였는데 만족스러운 일치를 보여주었다.

Keywords

References

  1. 천제호, 안경모, 윤종태 (2006). 음해법을 이용한 WAM모형 의 태풍 파랑 수치모의, 한국해안해양공학회지, 18(4), 294-300
  2. 최병호, (2004). 태풍 매미호에 의한 자연 재해, 한반도 해 역의 고파,폭풍해일 워크숍 논문집, 1-34
  3. 한국해양연구원 (2003). 부산신항 해양수리현상 연구개발 용 역, 한국해양연구원 연안항만공학연구본부
  4. Battjes, J.A. and Janssen, P.A.E.M. (1978). Energy loss and set-up due to breaking random waves, Proc. 16th Int'l Conf. Coastal Eng., 563-587
  5. Beji, S. and Battjes, J.A. (1993). Experimental investigation of wave propagation over a bar, Coastal Engineering, 19, 151-162 https://doi.org/10.1016/0378-3839(93)90022-Z
  6. Chawla, A., Ozkan, H.T., and Kirby, J.T. (1998). Spectral model for wave transformation and breaking over irregular bathymetry, Journal of Waterway, Port, Coastal and Ocean Engineering, 124(4), 189-198 https://doi.org/10.1061/(ASCE)0733-950X(1998)124:4(189)
  7. Chen, Q., Zhao, H., Hu, K., and Douglass, L. (2005). Prediction of wind waves in a shallow estuary, Journal of Waterway, Port, Coastal and Ocean Engineering, 131(5), 137-148 https://doi.org/10.1061/(ASCE)0733-950X(2005)131:4(137)
  8. Choi, B.H., Eum, H.M., Kim, H.S., Jeong, W.M. and Shim, J.S. (2004). Wave simulations for typhoon Maemi, The 14th OMISAR workshop on ccean models, http://ivy3.epa.gov. tw/ OMISAR/Data/WOM14/Proceedings/p6.pdf
  9. Elderberky, Y. (1996). Nonlinear transformation of wave spectra in the nearshore zone, Ph.D. thesis, Delft University of Technology, Department of Civil Engineering, The Netherlands
  10. Lavrenov, I.V. (2004). Wind-waves in oceans, Springer-Verlag Berlin Heidelberg New York
  11. Madsen, P.A., and Sorenson, O.R. (1993). Bound waves and triad interaction in shallow water, Ocean Engineering 20(4), 359-388 https://doi.org/10.1016/0029-8018(93)90002-Y
  12. Monbaliu, J., Padilla-Hernandez, R., Hargreaves, J.C., Albiach, J.C.C., Luo, W., Sclavo, M., and Gunther, H. (2000). The spectral wave model, WAM, adapted for applications with high spatial resolution, Coastal Engineering, 41(1), 41-62 https://doi.org/10.1016/S0378-3839(00)00026-0
  13. Sorenson, R.M. (1993). Basic wave mechanics for coastal and ocean engineers, John Wiley and Sons, Inc