DOI QR코드

DOI QR Code

GROUP-FREENESS AND CERTAIN AMALGAMATED FREENESS

  • Cho, Il-Woo (Department of Mathematics Saint Ambrose University)
  • Published : 2008.05.31

Abstract

In this paper, we will consider certain amalgamated free product structure in crossed product algebras. Let M be a von Neumann algebra acting on a Hilbert space Hand G, a group and let ${\alpha}$ : G${\rightarrow}$ AutM be an action of G on M, where AutM is the group of all automorphisms on M. Then the crossed product $\mathbb{M}=M{\times}{\alpha}$ G of M and G with respect to ${\alpha}$ is a von Neumann algebra acting on $H{\bigotimes}{\iota}^2(G)$, generated by M and $(u_g)_g{\in}G$, where $u_g$ is the unitary representation of g on ${\iota}^2(G)$. We show that $M{\times}{\alpha}(G_1\;*\;G_2)=(M\;{\times}{\alpha}\;G_1)\;*_M\;(M\;{\times}{\alpha}\;G_2)$. We compute moments and cumulants of operators in $\mathbb{M}$. By doing that, we can verify that there is a close relation between Group Freeness and Amalgamated Freeness under the crossed product. As an application, we can show that if $F_N$ is the free group with N-generators, then the crossed product algebra $L_M(F_n){\equiv}M\;{\times}{\alpha}\;F_n$ satisfies that $$L_M(F_n)=L_M(F_{{\kappa}1})\;*_M\;L_M(F_{{\kappa}2})$$, whenerver $n={\kappa}_1+{\kappa}_2\;for\;n,\;{\kappa}_1,\;{\kappa}_2{\in}\mathbb{N}$.

Keywords

References

  1. G. C. Bell, Growth of the asymptotic dimension function for groups, (2005) Preprint
  2. I. Cho, Graph von Neumann algebras, ACTA. Appl. Math. 95 (2007), 95-134 https://doi.org/10.1007/s10440-006-9081-y
  3. I. Cho, Characterization of amalgamated free blocks of a graph von Neumann algebra, Compl. Anal. Oper. Theo. 1 (2007), 367-398 https://doi.org/10.1007/s11785-007-0017-y
  4. I. Cho, Direct producted $W^\ast$-probability spaces and corresponding amalgamated free stochastic integration, Bull. Korean Math. Soc. 44 (2007), no. 1, 131-150 https://doi.org/10.4134/BKMS.2007.44.1.131
  5. R. Gliman, V. Shpilrain, and A. G. Myasnikov, Computational and Statistical Group Theory, Contemporary Mathematics, 298. American Mathematical Society, Providence, RI, 2002
  6. V. Jones, Subfactors and Knots, CBMS Regional Conference Series in Mathematics, 80. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991
  7. M. T. Jury and D. W. Kribs, Ideal structure in free semigroupoid algebras from directed graphs, J. Operator Theory 53 (2005), no. 2, 273-302
  8. D. W. Kribs and S. C. Power, Free semigroupoid algebras, J. Ramanujan Math. Soc. 19 (2004), no. 2, 117-159
  9. A. G. Myasnikov and V. Shpilrain, Group Theory, Statistics, and Cryptography, Contemporary Mathematics, 360. American Mathematical Society, Providence, RI, 2004
  10. A. Nica, R-transform in free probability, IHP course note, available at www.math. uwaterloo.ca/-anica
  11. A. Nica, D. Shlyakhtenko, and R. Speicher, R-cyclic families of matrices in free probability, J. Funct. Anal. 188 (2002), no. 1, 227-271 https://doi.org/10.1006/jfan.2001.3814
  12. A. Nica and R. Speicher, R-diagonal pair-a common approach to Haar unitaries and circular elements), www.mast.queensu.ca/-speicher
  13. F. Radulescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index, Invent. Math. 115 (1994), no. 2, 347-389 https://doi.org/10.1007/BF01231764
  14. D. Shlyakhtenko, Some applications of freeness with amalgamation, J. Reine Angew. Math. 500 (1998), 191-212
  15. D. Shlyakhtenko, A-valued semicircular systems, J. Funct. Anal. 166 (1999), no. 1, 1-47 https://doi.org/10.1006/jfan.1999.3424
  16. P. Sniady and R. Speicher, Continuous family of invariant subspaces for R-diagonal operators, Invent. Math. 146 (2001), no. 2, 329-363 https://doi.org/10.1007/s002220100166
  17. B. Solel, You can see the arrows in a quiver operator algebra, J. Aust. Math. Soc. 77 (2004), no. 1, 111-122 https://doi.org/10.1017/S1446788700010181
  18. R. Speicher, Combinatorial theory of the free product with amalgamation and operatorvalued free probability theory, Mem. Amer. Math. Soc. 132 (1998), no. 627, x+88 pp
  19. R. Speicher, Combinatorics of free probability theory ihp course note, available at www.mast. queensu.ca/-speicher
  20. J. Stallings, Centerless groups-an algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129-134 https://doi.org/10.1016/0040-9383(65)90060-1
  21. D. Voiculescu, Operations on certain non-commutative operator-valued random variables, Asterisque No. 232 (1995), 243-275
  22. D. Voiculescu, K. Dykemma, and A. Nica, Free Random Variables, A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. CRM Monograph Series, 1. American Mathematical Society, Providence, RI, 1992

Cited by

  1. Applications of automata and graphs: Labeling operators in Hilbert space. II. vol.50, pp.6, 2009, https://doi.org/10.1063/1.3141524
  2. Histories Distorted by Partial Isometries vol.3, 2011, https://doi.org/10.4303/jpm/P110301
  3. Applications of Automata and Graphs: Labeling-Operators in Hilbert Space I vol.107, pp.1-3, 2009, https://doi.org/10.1007/s10440-008-9380-6
  4. CLASSIFICATION ON ARITHMETIC FUNCTIONS AND CORRESPONDING FREE-MOMENT L-FUNCTIONS vol.52, pp.3, 2015, https://doi.org/10.4134/BKMS.2015.52.3.717
  5. ℂ-VALUED FREE PROBABILITY ON A GRAPH VON NEUMANN ALGEBRA vol.47, pp.3, 2010, https://doi.org/10.4134/JKMS.2010.47.3.601