DOI QR코드

DOI QR Code

A multiscale creep model as basis for simulation of early-age concrete behavior

  • Pichler, Ch. (Institute for Mechanics of Materials and Structures, Vienna University of Technology) ;
  • Lackner, R. (FG Computational Mechanics, Technical University of Munich)
  • Received : 2007.11.01
  • Accepted : 2008.05.01
  • Published : 2008.08.25

Abstract

A previously published multiscale model for early-age cement-based materials [Pichler, et al.2007. "A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials." Engineering Fracture Mechanics, 74, 34-58] is extended towards upscaling of viscoelastic properties. The obtained model links macroscopic behavior, i.e., creep compliance of concrete samples, to the composition of concrete at finer scales and the (supposedly) intrinsic material properties of distinct phases at these scales. Whereas finer-scale composition (and its history) is accessible through recently developed hydration models for the main clinker phases in ordinary Portland cement (OPC), viscous properties of the creep active constituent at finer scales, i.e., calcium-silicate-hydrates (CSH) are identified from macroscopic creep tests using the proposed multiscale model. The proposed multiscale model is assessed by different concrete creep tests reported in the open literature. Moreover, the model prediction is compared to a commonly used macroscopic creep model, the so-called B3 model.

Keywords

Acknowledgement

Supported by : Austrian Science Fund (FWF)

References

  1. Acker, P. (2001), "Micromechanical analysis of creep and shrinkage mechanisms", In: Ulm, F.-J., Bazant, Z., Wittmann, F. (Eds.), Concreep 6: Proceedings of the 6th International Conference on Creep, Shrinkage & Durability Mechanics of Concrete and other Quasi-Brittle Materials, Elsevier Science Ltd., Amsterdam, Cambridge, USA, pp. 15-25.
  2. Acker, P. and Ulm, F.-J. (2001), "Creep and shrinkage of concrete: physical origins and practical measurements", Nucl. Eng. Des. 203, 148-158.
  3. Athrushi, S. A. (2003), "Tensile and compressive creep of early age concrete: testing and modelling", Ph.D. thesis, The Norwegian University of Science and Technology, Trondheim, Norway.
  4. Bazant, Z. P. (1979), "Thermodynamics of solidifying or melting viscoelastic material", J. Eng. Mech. (ASCE), 105(6), 933-952.
  5. Bazant, Z. P. (Ed.), (1988), Mathematical modeling of creep and shrinkage of concrete. Wiley, New York.
  6. Bazant, Z. P. (1995), "Creep and damage in concrete", In: Skalnet, J., Mindess, S. (Eds.), Materials Science of Concrete. American Ceramic Society, Westerville, OH, pp. 335-389.
  7. Bazant, Z. P. and Baweja, S. (1997), "Creep and shrinkage prediction model for analysis and design of concrete structures: model B3". In: Al-Manaseer, A. (Ed.), SP-194: The Adam Neville Symposium: Creep and Shrinkage-Structural Design Eects, American Conrete Institue (ACI), Farmington Hills, MI, pp. 1-83.
  8. Bazant, Z. P., Hauggard, A. B., Baweja, S. and Ulm, F.-J. (1997), "Microprestress solidication theory for concrete creep, part I: Aging and drying effects. J. Eng. Mech. (ASCE), 123(11), 1188-1194. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1188)
  9. Bentz, D. P. (1997), "Three-dimensional computer simulation of Portland cement hydration and microstructure development", J. American Ceramic Society 80(1), 3-21, see also http://ciks.cbt.nist.gov/garbocz/AmCeram/. https://doi.org/10.1111/j.1151-2916.1997.tb02785.x
  10. Bernard, O., Ulm, F.-J. and Lemarchand, E. (2003), "A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials", Cement Concrete Res., 33, 1293-1309. https://doi.org/10.1016/S0008-8846(03)00039-5
  11. Beurthey, S. and Zaoui, A. (2000), "Structural morphology and relaxation spectra of viscoelastic heterogenous materials", European J. Mech. A/Solids, 19, 1-16. https://doi.org/10.1016/S0997-7538(00)00157-1
  12. Bye, G. C. (1999), Portland Cement, 2nd Edition. Thomas Telford Publishing, London.
  13. Cervera, M., Oliver, J. and Prato, T. (1999), "Thermo-chemo-mechanical model for concrete. II: damage and creep", J. Eng. Mech. (ASCE), 125(9), 1028-1039. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:9(1028)
  14. Cook, R. A., Hover, K. C. (1999), "Mercury porosimetry of hardened cement paste", Cement Concrete Res. 29, 993-943.
  15. Cusatic, G. and Cedolin, L. (2007), "Two-scale study of concrete fracturing behavior", Eng. Fract. Mech., 74(1-2), 3-17. https://doi.org/10.1016/j.engfracmech.2006.01.021
  16. Diamond, S. (2004), "The microstructure of cement paste and concrete - a visual primer", Cement Concrete Compo., 26(8), 919-933. https://doi.org/10.1016/j.cemconcomp.2004.02.028
  17. Diamond, S. and Leeman, M. E. (1995), "Pore size distribution in hardened cement paste by SEM image analysis", In: Diamond, S., Mindess, S., Glasser, F., Roberts, L., Skalny, J., Wakely, L. (Eds.), Microstructure of Cement-Based Systems/Bonding and Interfaces in Cementitious Materials. Vol. 370. Materials Research Society, Pittsburgh, pp. 217-226.
  18. Eshelby, J. D. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proceedings of the Royal Society of London A 241, 376-396. https://doi.org/10.1098/rspa.1957.0133
  19. Fussl, J., Lackner, R., Eberhardsteiner, J. and Mang, H. A. (2008), "Failure modes and effective strength of two-phase materials determined by means of numerical limit analysis", Acta Mech., 195(1-4), 185-202. https://doi.org/10.1007/s00707-007-0550-9
  20. Gawin, D., Pesavento, F. and Schrefler, B. A. (2006), "Hygro-thermo-chemo-mechanical modelling of concrete at early age and beyond. Part II: Shrinkage and creep of concrete", Int. J. Numer. Methods Eng., 67, 332-363. https://doi.org/10.1002/nme.1636
  21. Gawin, D., Pesavento, F. and Schrefler, B. A. (2007), "Modelling creep and shrinkage of concrete by means of effective stresses", Mater. Struct., 40, 579-591. https://doi.org/10.1617/s11527-006-9165-1
  22. Grondin, F., Dumontet, H., Ben Hamida, A., Mounajed, G. and Boussa, H. (2007), "Multiscales modelling for the behaviour of damaged concrete", Cement Concrete Res., 37(10), 1453-1462. https://doi.org/10.1016/j.cemconres.2007.05.012
  23. Hershey, A. V. (1954), "The elasticity of an isotropic aggregate of anisotropic cubic crystals". J. Appl. Mech. (ASME), 21, 236-240.
  24. Hua, C., Acker, P. and Ehrlacher, A. (1995), "Analyses and models of the autogenous shrinkage of hardening cement paste I. Modelling at macroscopic scale", Cement Concrete Res. 25, 1457-1468. https://doi.org/10.1016/0008-8846(95)00140-8
  25. Hummel, A., Wesche, K., Brand, W., Rusch, H., Kordina, K. and Hilsdorf, H. (1962), "Versuche uber das Kriechen unbewehrten Betons [creep tests on plain concrete]", Tech. Rep. 146, Deutscher Ausschuss fur Stahlbeton, Berlin, in German.
  26. Jehng, J.-Y., Sprague, D. T. and Halperin, W. P. (1996) "Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing", Magnetic Resonance Imaging, 14, 785-791. https://doi.org/10.1016/S0730-725X(96)00164-6
  27. Jennings, H. M. (2000), "A model for the microstructure of calcium silicate hydrate in cement paste", Cement Concrete Res., 30, 101-116. https://doi.org/10.1016/S0008-8846(99)00209-4
  28. Jennings, H. M. (2004), "Colloid model of C-S-H and implications to the problem of creep and shrinkage", Mater. Struct., 37, 59-70. https://doi.org/10.1007/BF02481627
  29. Koenders, E. A. B. and van Breugel, K. (1997). "Numerical modelling of autogenous shrinkage of hardening cement paste", Cement Concrete Res., 27(10), 1489-1499. https://doi.org/10.1016/S0008-8846(97)00170-1
  30. Kroener, E. (1958), "Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls [Computation of the elastic constants of a polycrystal based on the constants of the single crystal]", Zeitschrift fur Physik 151, 504-518, in German. https://doi.org/10.1007/BF01337948
  31. Lackner, R., Macht, J. and Mang, H. A. (2002), "Projekt zur Erstellung eines Programmsystems zur praktischen Umsetzung eines hybriden Verfahrens zur Bestimmung der Beanspruchung von Tunnelschalen aus Spritzbeton [Project for the development of a program system for the practical realization of a hybrid method for determination of the loading of shotcrete tunnel shells]", Tech. rep., Vienna University of Technology, Vienna, in German.
  32. Laplante, P. (1993), "Proprietes mecaniques des betons durcissants: analyse comparee des betons classiques et a tres hautes performances [Mechanical properties of hardening concrete: a comparative analysis of ordinary and high performance concretes]", Ph.D. thesis, Ecole Nationale des Ponts et Chaussees, Paris, France, in French.
  33. Laws, N. and McLaughlin, R. E. (1978), "Self-consistent estimates for the viscoelastic creep compliance of composite materials", Proceedings of the Royal Society of London A, 359, 251-273. https://doi.org/10.1098/rspa.1978.0041
  34. Lee, E. H. (1955), "Stress analysis in visco-elastic bodies", Quarterly of Applied Mathematics 13, 183-190.
  35. Lura, P., Jensen, O. M. and van Breugel, K. (2003), "Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanism", Cement Concrete Res., 33, 223-232. https://doi.org/10.1016/S0008-8846(02)00890-6
  36. Mandel, J. (1966), Mecanique des milieux continus [Continuum mechanics]. Gauthier, Paris, in French.
  37. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  38. Nabarro, F. R. N. (2001) "Creep mechanism in crystalline solids", Encyclopedia of Materials: Science and Technology, 1788-1795.
  39. Neubauer, C. M. and Jennings, H. M. (2000), "The use of digital images to determine deformation throughout a microstructure. Part II: Application to cement paste", J. Mater. Sci., 35, 5751-5765. https://doi.org/10.1023/A:1004835830352
  40. Pichler, C. (2007), "Multiscale characterization and modeling of creep and autogenous shrinkage of early-age cement-based materials", Ph.D. thesis, Vienna University of Technology, Vienna, Austria.
  41. Pichler, C. and Lackner, R. (2008), Identication of logarithmic-type creep of calcium-silicate-hydrates by means of nanoindentation. Strain. In print.
  42. Pichler, C., Lackner, R. and Mang, H. A. (2007), "A multiscale micromechanics model for the autogenousshrinkage deformation of early-age cement-based materials". Eng. Fract. Mech., 74, 34-58. https://doi.org/10.1016/j.engfracmech.2006.01.034
  43. Pichler, C., Lackner, R. and Ulm, F.-J. (2008), "Scaling relations for viscoelastic-cohesive conical indentation". Int. J. Mater. Res. 99, 836-846. https://doi.org/10.3139/146.101707
  44. Ruetz, W. (1966), Das Kriechen des Zementsteins im Beton und seine Beeinflussung durch gleichzeitiges Schwinden [Creep of cement in concrete and the influence of simultaneous shrinkage on this type of creep]. Deutscher Ausschuss fur Stahlbeton, Heft 183, In German.
  45. Sanahuja, J., Dormieux, L. and Chanvillard, G. (2007), "Modelling elasticity of a hardening cement paste", Cement Concrete Res., 37, 1427-1439. https://doi.org/10.1016/j.cemconres.2007.07.003
  46. Sercombe, J., Hellmich, C., Ulm, F.-J., Mang, H. A. (2000), "Modeling of early-age creep of shotcrete. I: model and model parameters", J. Eng. Mech. (ASCE), 126(3), 284-291. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(284)
  47. Stehfest, H., 1970. Algorithm 368: Numerical inversion of Laplace transforms. Communications of the ACM, 13, 47-49. https://doi.org/10.1145/361953.361969
  48. Stora, E., He, Q.-C. and Bary, B. (2006), "Influence of inclusion shapes on the effective linear elastic properties of hardened cement pastes", Cement Concrete Res., 36(7), 1330-1344. https://doi.org/10.1016/j.cemconres.2006.02.007
  49. Suquet, P. (Ed.) (1997), Continuum micromechanics. Springer, Vienna.
  50. Taylor, H. F. W. (1997), Cement chemistry, 2nd Edition. Thomas Telford Publishing, London.
  51. Tennis, P. D. and Jennings, H. M. (2000), "A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes", Cement Concrete Res., 30, 855-863. https://doi.org/10.1016/S0008-8846(00)00257-X
  52. Thomas, J. J. and Jennings, H. M. (2006), "A colloidal interpretation of chemical aging of C-S-H gel and and its effects on the properties of cement paste", Cement Concrete Res., 36, 30-38. https://doi.org/10.1016/j.cemconres.2004.10.022
  53. Ulm, F.-J. (1998), "Couplages thermochemomecaniques dans les betons : un premier bilan. [Thermochemomechanical couplings in concretes: a first review]", Tech. rep., Laboratoires des Ponts et Chaussees, Paris, France, In French.
  54. Ulm, F.-J. and Coussy, O. (1995), "Modeling of thermochemomechanical couplings of concrete at early ages", J. Eng. Mech. (ASCE), 121(7), 785-794.
  55. Ulm, F.-J. and Coussy, O. (1996), "Strength growth as chemo-plastic hardening in early age concrete", J. Eng. Mech. (ASCE), 122(12), 1123-1132. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:12(1123)
  56. Ulm, F.-J., Le Maou, F. and Boulay, C. (1999), "Creep and shrinkage couplings: new review of some evidence", Revue Francaise de Genie Civil. Ed. Hermes, 3, 21-37.
  57. Wittmann, F. H. (1982), "Creep and shrinkage mechanisms", In: Bazant, Z. P., Wittmann, F. H. (Eds.), Creep and shrinkage in concrete structures. Wiley, Chichester, pp. 129-161.
  58. Zaoui, A. (1997), "Structural morphology and constitutive behaviour of microheterogenous materials", In: Suquet, P. (Ed.), Continuum micromechanics. Springer, Vienna.
  59. Zohdi, T. I. (2004), "Homogenization methods and multiscale modeling: linear problems", In: Stein, E., de Borst, R., Hughes, T. (Eds.), Encyclopedia of Computational Mechanics, Wiley, Chichester.

Cited by

  1. Linear and Non-linear Creep models for a multi-layered concrete composite vol.13, pp.4, 2013, https://doi.org/10.1016/j.acme.2013.04.002
  2. Microstructural Modeling of Early-Age Creep in Hydrating Cement Paste vol.142, pp.11, 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001144
  3. A proposed model for creep in mass concrete under variable ambient conditions vol.19, pp.sup2, 2015, https://doi.org/10.1179/1432891714Z.0000000001069
  4. Micromechanics-based multifield framework for early-age concrete vol.47, 2013, https://doi.org/10.1016/j.engstruct.2012.08.015
  5. The simulation of inelastic matrix strains in cementitious materials using micromechanical solutions vol.133, 2015, https://doi.org/10.1016/j.engfracmech.2014.10.010
  6. Elastic and creep properties of young cement paste, as determined from hourly repeated minute-long quasi-static tests vol.82, 2016, https://doi.org/10.1016/j.cemconres.2015.11.007
  7. Identification of viscoelastic C-S-H behavior in mature cement paste by FFT-based homogenization method vol.40, pp.2, 2010, https://doi.org/10.1016/j.cemconres.2009.10.003
  8. Mechanical and micromechanical properties of alkali activated fly-ash cement based on nano-indentation vol.107, 2016, https://doi.org/10.1016/j.conbuildmat.2015.12.013
  9. Degree of hydration based prediction of early age basic creep and creep recovery of blended concrete vol.48, 2014, https://doi.org/10.1016/j.cemconcomp.2013.10.012
  10. Nanoindentation characteristics of alkali-activated aluminosilicate materials vol.33, pp.2, 2011, https://doi.org/10.1016/j.cemconcomp.2010.10.005
  11. A micromechanics based constitutive model for fibre reinforced cementitious composites vol.110-111, 2017, https://doi.org/10.1016/j.ijsolstr.2017.01.032
  12. Creep of concrete at variable stresses and heating vol.16, pp.6, 2015, https://doi.org/10.12989/cac.2015.16.6.897
  13. Microstructural effects in the simulation of creep of concrete vol.105, 2018, https://doi.org/10.1016/j.cemconres.2017.12.001
  14. Predictive modelling of hydration and mechanical performance of low Ca composite cements: Possibilities and limitations from industrial perspective vol.100, 2017, https://doi.org/10.1016/j.cemconres.2017.05.020
  15. Strain-rate sensitivity of cement paste by microindentation continuous stiffness measurement: Implication to isotache approach for creep modeling vol.100, 2017, https://doi.org/10.1016/j.cemconres.2017.05.023
  16. Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics vol.65, 2017, https://doi.org/10.1016/j.euromechsol.2017.02.008
  17. Modelling creep of high strength concrete vol.7, pp.6, 2008, https://doi.org/10.12989/cac.2010.7.6.533
  18. Water Redistribution-Microdiffusion in Cement Paste under Mechanical Loading Evidenced by 1H NMR vol.123, pp.26, 2008, https://doi.org/10.1021/acs.jpcc.9b02436
  19. Creep and Shrinkage Modeling of Concrete Using Solidification Theory vol.32, pp.7, 2008, https://doi.org/10.1061/(asce)mt.1943-5533.0003256
  20. Confronting a refined multiscale estimate for the aging basic creep of concrete with a comprehensive experimental database vol.136, pp.None, 2008, https://doi.org/10.1016/j.cemconres.2020.106163
  21. Entwicklung der Kriech‐ und Schwindmodelle für Betontragwerke in Österreich und Deutschland – Bewertung der Modelle hinsichtlich der Sensitivität einzelner Eingangsparameter vol.116, pp.11, 2008, https://doi.org/10.1002/best.202100075
  22. A multiscale model for predicting the coefficient of thermal expansion of concrete vol.11, pp.11, 2008, https://doi.org/10.1063/5.0071677