Reliability Analysis and Evaluation of Partial Safety Factors of Breakwater Armor stones Considering Correlation between Wave Height and Wave Steepness

파고와 파형경사의 상관성을 고려한 피복석의 신뢰성 해석 및 부분안전계수 산정

  • Kim, Seung-Woo (School of Civil and Environmental Engineering, Seoul National University) ;
  • Suh, Kyung-Duck (School of Civil and Environmental Engineering, Seoul National University)
  • 김승우 (서울대학교 건설환경공학부) ;
  • 서경덕 (서울대학교 건설환경공학부)
  • Published : 2008.06.30

Abstract

The partial safety factors of armor stones have been calculated on the assumption that all random variables are independent one another. However, wave height and wave steepness are not independent in the van der Meer's formula of armor stones but they are correlated. In the present study, we calculated the partial safety factors considering the correlation and compared them with those of other researchers who did not consider the correlation. The correlation between wave height and steepness is closely related to the variability of wave period. As the variability of wave period decreases, the correlation between wave height and steepness becomes strong, and hence the calculation results with and without consideration of the correlation show more difference. Therefore, the correlation should be taken into account in the calculation of partial safety factors in the area where the variability of wave period is small.

지금까지 연구된 피복석의 부분안전계수는 각 확률변수가 독립이라고 가정하여 계산하였다. 하지만 피복석의 안정공식 중 van der Meer 공식에서 파형경사와 파고는 독립이 아니며 상관성을 가지고 있다. 본 연구에서는 이들의 상관성을 고려한 부분안전계수를 산정하였고 이를 상관성을 고려하지 않은 다른 연구자들의 결과와 비교하였다. 파고와 파형경사의 상관성은 주기의 변동성과 밀접한 관계가 있다. 주기의 변동성이 작아짐에 따라 파고와 파형경사의 상관성은 커지며, 상관성 고려 여부에 따른 계산 결과의 차이가 커진다. 따라서 주기의 변동성이 작은 지역에서는 상관성을 충분히 검토하여 부분안전계수를 산정해야 할 것이다.

Keywords

References

  1. 김승우, 서경덕 (2005). 동해항 방파제를 대상으로 한 신뢰 성 설계법의 비교 연구. 1. 피복 블록의 안정성, 한국해안해양공학회지, 17(3), 188-201
  2. 서경덕, 권혁동, 이동영(2008). 한반도 주변 심해파의 통계적 특성, 제2회 항만구조물 신뢰성 설계법 기술교육 위크샵, 항 만구조물 신뢰성 설계 연구단, 도서출판 씨아이알, 107- 124
  3. 이철응 (2007). 피복재의 부분안전계수 산정, 한국해안해양공학회지, 19(4), 336-344
  4. Burcharth, H.F. (1991). Introduction of partial coefficient in the design of rubble mound breakwaters, Proc. Coastal Structures Breakwaters, Institution of Civil Engineers, London, 543-565
  5. Burcharth, H.F. (1992). Reliability evaluation of a structure at sea, Proc. 23rd. Int. Conf. on Coastal Engineering, ASCE, NewYork, 511-545
  6. Burcharth, H.F. and Sorenson, J.D. (2000). The PIANC safety factor system for breakwaters, Proc. Coastal Structures '99, Spain, 1125-1144
  7. Goda, Y. (2003), Revisiting Wilson's formulas for simplified wind-wave prediction, J. Waterway, Port, Coastal and Ocean Engrg., ASCE, 129(2)
  8. Qie, L. and Cai, S. (2007). Determination of partial coefficients for reliability of semi-circular breakwaters, Proc. of Asian and Pacific Coasts 2007, Nanjing, 1736-1747
  9. Rackwitz, R. (1976). Practical probabilistic approach to design, Bulletin 112, Comite European du Beton, Paris, France
  10. van der Meer, J.W. (1987). Stability of breakwater armor layers design formulae, Coastal Engrg., 11, 219-239 https://doi.org/10.1016/0378-3839(87)90013-5
  11. van der Meer, J.W. (1988). Deterministic and probabilistic design of breakwater armor layers, J. Waterway, Port, Coastal and Ocean Engrg., ASCE, 114(1), 66-80 https://doi.org/10.1061/(ASCE)0733-950X(1988)114:1(66)
  12. Yoshioka, T. and Nagao, T. (2005). Level-1 reliability-based design method for gravity-type special breakwaters, Research report of NILIM
  13. Zhao, G., Jin, W. and Gong, J. (2000). Theory of structural reliability, China Construction Press, Beijing (in Chinese)