Development of Marine Ecotoxicological Standard Methods for Ulva Sporulation Test

파래의 포자형성률을 이용한 해양생태독성시험 방법에 관한 연구

  • Han, Tae-Jun (Department of Biology, University of Incheon) ;
  • Han, Young-Seok (Institute of Green Technology, University of Incheon) ;
  • Park, Gyung-Soo (Department of Marine Biotechnology, Anyang University) ;
  • Lee, Seung-Min (Environment Research Division, West Sea Fisheries Research Institute, NFRDI)
  • 한태준 (인천대학교 생물학과) ;
  • 한영석 (인천대학교 녹색기술연구소) ;
  • 박경수 (안양대학교 해양생명공학과) ;
  • 이승민 (국립수산과학원 서해수산연구소)
  • Published : 2008.05.31

Abstract

As an aquatic ecotoxicity test method, a bioassay using the inhibition of sporualtion of the green macroalga, Ulva pertusa, has been developed. Optimal test conditions determined for photon irradiance, pH, salinity and temperature were $100\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $7{\sim}9$, $25{\sim}35\;psu$ and $15{\sim}20^{\circ}C$, respectively. The validity of the test endpoint was evaluated by assessing the toxicity of four metals (Cd, Cu, Pb, Zn) and elutriates of sewage or waste sludge collected from 9 different locations. When the metals were assayed, the $EC_{50}$ values indicated the following toxicity rankings: Cu ($0.062\;mg{\cdot}L^{-1}$) > Cd ($0.208\;mg{\cdot}L^{-1}$) > Pb ($0.718\;mg{\cdot}L^{-1}$) > Zn ($0.776\;mg{\cdot}L^{-1}$). When compared with other commonly used bioassays of metal pollution listed on US ECOTOX database, the sporualtion test proved to be the most sensitive. Ulva sporulation was significantly inhibited in all elutriates with the greatest and least effects observed in elutriates of sludge from industrial waste ($EC_{50}=6.78%$) and filtration bed ($EC_{50}=15.0%$), respectively. The results of the Spearman rank correlation analysis for $EC_{50}$ data versus the concentrations of toxicants in the sludge presented a significant correlation between toxicity and four heavy metals(Cd, Cu, Pb, Zn). The method described here is sensitive to toxicants, simple to use, easy to interpret and economical. It is also easy to procure samples and maintain cultures. The present method would therefore probably make a useful assessment of aquatic toxicity of a wide range of toxicants. In addition, the genus Ulva has a wide geographical distribution and species have similar reproductive processes, so the test method would have a potential application worldwide.

해조류를 이용한 수생태독성시험법으로 대형 녹조 구멍갈파래(Ulva pertusa)의 포자형성률을 endpoint로 사용하는 독성시험법이 개발되었다. 생태독성시험을 위한 최적 조건은 광조사량 $100\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 수소이온농도(pH) $7{\sim}9$, 염분 $25{\sim}35\;psu$ 그리고 수온 $15{\sim}20^{\circ}C$이다. 본 시험법의 민감도는 표준중금속(Cd, Cu, Pb, Zn)을 가지고 확인하였고, 오염 시료에 적용 가능성은 9 지역의 산업폐수 또는 생활하수 오니 용출액(elutriate)을 이용하여 이루어졌다. 네 종의 중금속에 대한 포자형성률 억제 반응의 $EC_{50}$ 값을 산출한 결과, 구리($0.062\;{mg}{\cdot}L^{-1}$) > 카드뮴($0.208\;mg{\cdot}L^{-1}$) >납($0.718\;mg{\cdot}L^{-1}$) > 아연($0.776\;mg{\cdot}L^{-1}$) 순으로 민감하게 나타났는데, 이러한 결과는 US EPA에서 제공하는 ECOTOX DB에 탑재되어 있는 국제적으로 공인된 수생태 독성시험법 결과와 비교해 볼 때, 더 높은 중금속 민감성을 보였다. 현장시료에 대한 포자형성률 억제 반응의 $EC_{50}$ 값을 살펴보면 산업폐수오니($EC_{50}=6.78%$)에서 가장 높고 정수장오니($EC_{50}=15.00%$)에서 가장 낮은 독성 반응을 보이는 것으로 나타났다. 산업폐수 또는 생활하수오니 용출액내에 함유된 독성원 농도와 산출된 $EC_{50}$ 값 사이에 상관성을 밝히기 위해 Spearman rank correlation test를 실시한 결과, 구리, 카드뮴, 납 그리고 아연이 구멍갈파래의 포자형성 저해 반응과 밀접한 상관관계가 있는 것으로 확인되었다. 본 시험법은 독성 민감성이 높고, 사용이 간편하고, 경제적이고, 해석이 용이하며, 대량의 시험재료 확보가 상시 가능하고, 배양이 어렵지 않아 매우 편리한 시스템이라고 할 수 있다. 특히, 파래의 포자형성 과정이 파래 집단의 성쇠와 밀접한 관련이 있으므로 생태적인 의미까지 포함하기에 보다 다양한 독성물질을 대상으로 독성민감성이 확인될 경우, 수서 생태독성을 진단하는데 유용한 프로토콜로 사용될 수 있을 것으로 사료된다. 또한, 파래류는 넓은 지리적 분포와 속 수준에서 포자형성 과정의 유사성 때문에 전 세계적으로 광역적 적용이 가능할 것으로 기대된다.

Keywords

References

  1. 강제원, 1968. 한국동식물도감, 제8권 식물편(해조류). 문교부, 465pp
  2. 해양수산부, 2005. 해양환경공정시헙법. 해양수산부, 400pp
  3. Ahlf, W., H. Hollert, H. Neumann-Hensel and M. Ricking, 2002. A guidance for the assessment and evaluation of sediment quality: A german approach based on ecotoxicological and chemical measurements. J. Soils Sediments, 2: 37−42
  4. Anderson, B.S., J.W. Hunt, S.L. Turpen, A.R. Coulon and M. Martin, 1990. Copper toxicity to microscopic stages of giant kelp Macrocystis pyrifera: interpopulation comparisons and temporal variability. Mar. Ecol. Prog. Ser., 68: 147−159
  5. Bengtsson, B.-E., J.P. Bongo and B. Eklund, 1999. Assessment of duckweed Lemna aequinoctialis as a toxicological bioassay for tropical environments in developing countries. AMBIO, 28: 152− 155
  6. Bidwell, J.R., K.W. Wheeler and T.R. Burridge, 1998. Toxicant effects on the zoospore stage of the marine macroalga Ecklonia radiata (Phaeophyta: Laminariales). Mar. Ecol. Prog. Ser., 163: 259−265
  7. Bisson, S., C. Blaise and N. Bermingham, 1989. Assessment of the inorganic bioaccumulation potential of aqueous samples with two algal bioassays. In: Aquatic Toxicology and Water Quality Management, John Wiley & Sons, New York, pp. 205−215
  8. Chen, C.Y., K.C. Lin and D.T. Yang, 1997. Comparison of the relative toxicity relationships based on batch and continuous algal toxicity tests. Chemosphere, 35: 1959−1965
  9. Chu, K.W. and K.L. Chow, 2002. Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat. Toxicol., 61: 53−64
  10. Cohen, I. and A. Neori, 1991. Ulva lactuca biofilters for marine fishpond effluents I. Ammonium uptake kinetics and nitrogen content. Bot. Mar., 34: 475−482
  11. Eklund, B.T. and L. Kautsky, 2003. Review on toxicity testing with marine macroalgae and the need for method standardizationexemplified with copper and phenol. Mar. Poll. Bull., 46: 171−181
  12. GESAMP, 1989. The evaluation of the hazards of harmful substances carried by ships. Revision of GESAMP reports and studies No. 17, GESAMP reports and studies No. 35, International Maritime Organization (IMO) London
  13. Goettl, J.P. Jr., J.R. Sinley and P.H. Davies, 1974. Water Pollution Studies Job Progress Report, Federal Aid Project F-33-R-9, Colorado Division Wildlife, Fort Collins, CO
  14. Goettl, J.P. Jr., P.H. Davies and J.R. Sinley, 1976. Colorado Fish. Res. Rev. 1972-1975, DOW-R-R-F72-75, Colorado Division Wildlife, Fort Collins, CO
  15. Haglund, K., M. Bjorklund, S. Gunnare, A. Sandberg, U. Olander and M. Pedersen, 1996. New methods for toxicity assessment in marine and brackish environments using the macroalga Gracilaria tenuistipitata (Gracilariales, Rhodophyta). Hydrobiologia, 326/ 327: 317−325
  16. Han, T., Y.-S. Han, J. Kain and D.-P. Häder, 2003. Thallus differentiation of photosynthesis, growth, reproduction and UV-B sensitivity in the green alga Ulva pertusa Kjellman. J. Phycol., 39: 712−721
  17. Han, T. and G.-W. Choi, 2005. A novel marine algal toxicity bioassay based on sporulation inhibition in the green macroalga Ulva pertusa (Chlorophyta). Aquat. Toxicol., 75: 202−212
  18. Han, T., S.-H. Kang, J.-S. Park, H.-K. Lee and M.T. Brown, 2008. Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Aquat. Toxicol. 86: 176−184
  19. Han, Y.-S., M.T. Brown, G.S. Park and T. Han, 2007. Evaluating aquatic toxicity by visual inspection of thallus color in the green macroalga Ulva: testing a novel bioassay. Environ. Sci. Technol., 41: 3667−3671
  20. Haritonidis, S. and P. Malea, 1999. Bioaccumulation of metals by the green alga Ulva rigida from Thermaikos Gulf, Greece. Environ. Pollut., 104: 365−372
  21. Hooten, R.L. and R.S. Carr, 1998. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores. Environ. Toxicol. Chem., 17: 932−940
  22. Kazlauskiene, N., A. Burba and G. Svecevicius, 1994. Acute toxicity of five galvanic heavy metals to hydrobionts. Ekologija., 1: 33−36
  23. Kim, K.Y., I.K. Lee and I.C. Chung, 1992. The combined effects of irradiance and salinity, and temperature and salinity on germination and zoosporogenesis of Enteromorpha intestinalis (L.) Link. Kor. J. Env. Biol., 10: 56−65
  24. Lee, W.-Y. and W.-X. Wang, 2001. Metal accumulation in the green macroalga Ulva fasciata: effects of nitrate, ammonia and phosphate. Sci. Total. Environ., 278: 11−22
  25. Mata, L. and R. Santos, 2003. Cultivation of Ulva rotundata (Ulvales, Chorophyta) in raceways, using semi-intensive fishpond effluents: yield and biofiltration. In: Proceedings of the 17th International Seaweed Symposium, Oxford University Press, Oxford, pp. 237−242
  26. Mount, D.I. and T.J. Norberg, 1984. A seven-day life-cycle cladoceran toxicity test. Environ. Toxicol. Chem., 3: 425−434
  27. Rai, L.C., J.P. Gaur and H.D. Kumar, 1981. Phycology and heavymetal pollution. Biol. Rev., 56: 99−151
  28. Steele, R.L. and G.B. Thursby, 1983. A toxicity test using life stages of Champia parvula (Rhodophyta). In: Aquatic Toxicology and Hazard Assesment, edited by Bishop, W.E., R.D. Cardwell and B.B. Heidolph, American Society for Testing and Materials, Baltimore, pp. 73−89
  29. Schuytema, G.S., P.O. Nelson, K.W. Malueg, A.V. Nebeker, D.F. Krawczyk and A.K. Ratcliff, 1984. Toxicity of cadmium in water and sediment slurries to Daphnia magna. Environ. Toxicol. Chem., 3: 293−308
  30. Shcheglov, V.V., G.V. Moiseichenko and L.T. Kovekovdova, 1990. Effect of copper and zinc on embryos, larvae and adult individuals of the sea urchin Strongylocentrotus intermedius and the sea cucumber Stichopus japonicus. Biol. Morya (Vladivost), 3: 55−58
  31. Thursby, G.B. and R.L. Steele, 1995. Sexual reproduction tests with marine seaweeds (macroalgae). In: Fundamentals of Aquatic Toxicology, edited by Rand, G.M., Taylor & Francis, Washington, D.C., pp. 171−188
  32. Van den Hoek, C., D.G. Mann and H.M. Jahns, 1995. Algae. Cambridge University Press, Cambridge, 613 pp
  33. Wang, W., 1986. Toxicity tests of aquatic pollutants by using common duckweed. Environ. Pollut. Ser. B., 11: 1−14