Development of Ecotoxicological Standard Methods using Early Life Stage of Marine Rotifer Brachionus plicatilis and Benthic Copepod Tigriopus japonicus

윤충류 Brachionus plicatilis 및 저서 요각류 Tigriopus japonicus의 초기 생활사를 이용한 해양생태독성시험 방법에 관한 연구

  • 이승민 (국립수산과학원 서해수산연구소) ;
  • 박경수 (안양대학교 해양생명공학과) ;
  • 윤성진 ((주)바이오니아) ;
  • 강영실 (국립수산과학원 해양생태연구과) ;
  • 오정환 (부산대학교 생명과학과)
  • Published : 2008.05.31

Abstract

Marine ecotoxicological standard method was applicated using marine rotifer and benthic copepod as primary consumer of marine ecosystem. Marine rotifer, Brachionus plicatilis and benthic copepod, Tigriopus japonicus were designated as standard test species with the endpoints of 24hr neonate mortality (24hr $LC_{50}$) and 48hr population growth (48hr $EC_{50}$) for rotifer, and 48hr nauplius mortality (48hr $LC_{50}$) for benthic copepod. Tests method was referred to those of ASTM (American Society for Testing and Materials) with the replacement of test species which are widely distributed in Korean waters. The two species showed a wide tolerance on salinity ($5{\sim}35\;psu$) and can be easily cultured in small space even they were not as sensitive as in the mortality test using the nauplius of marine invertebrates. However, these species revealed the significant "concentrationresponse relationship" tested with ocean disposal wastes, and reproducibility using cadmium as standard reference material between laboratories. Accordingly, these two species have good potential as test species for marine ecotoxicological test species. Also, we strongly recommend that at least one of these species be included in the test species of "battery test" in marine bioassay.

해양생태독성평가를 위한 표준시험방법 개발을 위하여 해양생태계의 1차 소비자인 윤충류 및 저서 요각류를 이용한 시험방법을 정립하였다. 표준시험생물로 윤충류 Brachionus plicatilis와 저서 요각류 Tigriopus japonicus를 선정하였으며, endpoint는 윤충류 신생개체의 사망률(24 hr $LC_{50}$) 및 개체군성장률(48 hr $EC_{50}$)과 저서 요각류 유생($100{\sim}200\;{\mu}m$)의 사망률(48 hr $LC_{50}$)로 설정하였다. 표준시험방법은 미국재료시험협회 (ASTM)의 독성시험법을 참고하였으며, 표준시험생물은 국내 해양생태계의 특성 및 종의 유용성 등을 고려하여 재설정하였다. 윤충류 B. plicatilis와 저서 요각류 T. japonicus는 광염성으로 $5{\sim}35\;psu$ 구간에서 실험이 가능하고, 또한 배양이 용이한 점이 고려되었다. 상기 두 종을 이용한 독성시험은 시험생물 확보 및 배양이 쉽고 시험기간이 짧고 간단한 장점이 있는 반면 독성시험의 민감도가 무척추동물의 유생을 이용한 시험법보다 떨어지는 단점이 있다. 두 종 모두 해양유입 유해물질을 이용한 독성실험결과, 농도-반응의 선형관계가 뚜렷하였다. 카드뮴을 이용한 윤충류 개체군성장에 대한 실험실간 교차분석결과 $EC_{50}$이 각각 39.3 mg/L와 33.7 mg/L로 유사한 값을 보였다. 따라서 윤충류 및 저서 요각류는 독성시험생물로서 유용한 것으로 판단되며, 위의 두 종중 최소 1종은 해양생태 독성실험의 "battery test"에 포함할 것을 권장한다.

Keywords

References

  1. 윤성진, 박경수, 오정환, 박승윤, 2006. 저서성 해산 요각류 harpacticoid Tigriopus japonicus 유생을 이용한 해양생태독성 평가. 한국해양환경공학회지, 9: 160−167
  2. Arnott, G.H. and M. Ahsanullah, 1979. Acute toxicity of copper, cadmium and zinc to three species of marine copepod. Aust. J. Mar. Freshwat. Res., 30: 63−71
  3. ASTM, 1996. Standard Guide for Acute Toxicity Test with the Rotifer Brachionus. ASTM (American Society for Testing and Materials) 11.05, E1440-91. ASTM, W. Conshohocken, PA
  4. Barka, S., J.F. Pavillon and J.C. Amiard, 2001. Influence of different essential and non-essential metals on MTLP levels in the copepod Tigriopus brevicornis. Comp. Biochem. Physiol., 128C: 497−493
  5. Bengtsson, B.E., 1978. Use of harpacticoid copepod in toxicity test. Mar. Pollut. Bull., 9: 238−241
  6. Cecchine, G. and T.W. Snell, 1999. Toxicant exposure increases threshold food levels in freshwater rotifer population. Environ. Toxicol., 14: 523−530
  7. Chung, E.Y., K.S. Shin and W.H. Yih, 1996. Effects of suspended soild and cadmium on the shallow-sea ecosystem. II. Acute and chronic toxicity of cadmium to a herbivorous copepod, Tigriopus haponicus. J. Korean Fish. Soc., 29: 124−133
  8. Dunnett, C.W., 1964. New table for multiple comparisons with a control. Biometrics, 20: 482 https://doi.org/10.2307/2528490
  9. Egloff, D.A., 1988. Food and growth relations of the marine zooplankter, Synchaeta cecelia (Rotifera). Hydrobiologia, 157: 129−141
  10. Fielder, D.S., G.J. Purser and S.C. Battaglene, 2000. Effect of rapid changes in temperature and salinity on availability of the rotifers Brachionus rotundiformis and Brachionus plicatilis. Aquaculture, 189: 85−99
  11. Forget, J., J.F. Pavillon, M.R. Menasria and G. Bocquene, 1998. Mortality and LC50 for several stages of marine copepod Tigriopus brevicornis (Muller) exposed to the metals arsenic and Cadmium and the pesticides atrazine, carbofuran, dichlorvos, and malathion. Ecotoxicol. Environ. Saf., 40: 239−244
  12. Frolov, A.V., S.L. Pankov, K.N. Geradze and S.A. Pankova, 1991. Influence of salinity on the biochemical composition of the rotifer Brachionus plicatilis (Muller) aspect of adaptation. Comparative Biochemistry and Physiology Part A, Physiology, 99: 541−550
  13. Fukusho, K., 1983. Present status and problems in culture of the rotifer Brachionus plicatilis for fry production of marine fishes in Japan. In; Advances and Perspectives in Aquaculture. Proceedings of a Symposium, edited by Fuentes, H.R., J.G. Castillo and L.H. Disalvo, Universidad del Norte, Coquimbo, Chile, pp. 361− 374
  14. Fulks, W. and K.L. Main, 1991. Rotifer (Brachionus plicatilis) production systems. In: Rotifer and Microalgae Production systems. Proceedings of a US-Asia Workshop, Honolu, HA, January 28- 31, edited by Fulks, W. and K.L. Main, pp 3−52
  15. Guerra, R., 2001. Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents. Chemosphere, 44: 1737−1747
  16. Hagiwara, A., 1994. Practical use of rotifer cysts. The Israeli J. of Aquaculture-Bamidgeh, 46: 13−21
  17. Hagiwara, A., M.D. Balompapueng, N. Munuswamy and K. Hirayama, 1997. Mass production and preservation of the resting eggs of the euryhaline rotifer Brachionus plicatilis and B. rotundiformis. Aquaculture, 155: 223−230
  18. Jung, M.M., S. Rho, and H.S. Kim, 2000. Interspecific relationship between two food organisms in the combinatiion culture tank of rotifer, Brachionous rotundiformis and copepod, Tigriopus japonicus. J. Korean Fish. Soc., 33(1): 66−99
  19. Komis, A., 1992. Improved production and utilization of the rotifer Brachionus plicatilis Muller, in European sea bream (Sparus auratus Linnaeus) and sea bass (Dicentrarchus labrax Linnaeus) larviculture. Doctor in Agricultural Sciences Thesis, University of Ghent, 277pp
  20. Korunuma, K. and K. Fukusho, 1987. Rearing of Marine Fish Larvae in Japan. IDRC, Otawa, 109pp
  21. Kwok, K.W.H. and K.M.Y. Leung, 2005. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): Effects of temperature and salinity. Mar. Pollut. Bull., 51: 830−837
  22. Lee, W.J. and N. Taga, 1985. Environmental condition and microbial survey of the tide pools densely inhabited by Tigriopus japonicus Mori. Bull. Korean Fish. Soc., 18: 57−62
  23. Lee, W.J. and N. Taga, 1988. Investigation of marine bacteria for the food of Tigriopus japonicus Mori (Harpacticoida). Bull. Korean Fish. Soc., 21(1): 50−56
  24. Lee, W.J., 1991. Efficiency of various microbial foods for Tigriopus japonicus Mori. Bull. Korean Fish. Soc., 24: 117−122
  25. McAllen, R. and A. Taylor, 2001. The effect of salinity change on the oxygen consumption and swimming activity of the highshore rockpool copepod Tigriopus brevicornis. J. Exp. Mar. Biol. Ecol., 263: 227−240
  26. McAllen, R., A.C. Taylor and J. Davenport, 1999. The effects of temperature and oxygen partial pressure on the rate of oxygen consumption of the high-shore rock pool copepod Tigriopus brevicornis. Comp. Biochem. Physiol., 123A: 195−202
  27. Moffat, B.D. and T.W. Snell, 1995. Rapid toxicity assessment using an in Vivo enzyme test for Brachionus plicatilis (Rotifera). Ecotoxicology and Environmental safety, 30: 47−53
  28. Nogrady, T., R.I. Wallace and T.W. Snell, 1993. Rotifera, Vol. 1. Biology, Ecology and Systematics. SPB Academica Publishing. The Hague, The Netherlands
  29. O'Brien, P., H. Feldmen, E.V. Grill and A.G. Lewis, 1988. Copper tolerance of the life history stages of the splash pool copepod Tigriopus californicus (Copepoda, Harpacticoida). Mar. Ecol. Prog. Ser., 44: 59−64
  30. Park. G.S., C.S. Chung, S.H. Lee, G.H. Hong, S.H. Kim, S.Y. Park, S.J. Yoon and S.M. Lee, 2005. Ecotoxicological evaluation of sewage sludge using bioluminescent marine bacteria and rotifer. Ocean Science Journal, 40: 91−100 https://doi.org/10.1007/BF03028589
  31. Preston, B.L., T.W. Snell, T.L. Robertson and B.J. Dingmann, 2000. Use of freshwater rotifer Brachionus calyciflorus in screening assay for potential endocrine distruptors. Environ. Toxicol. Chem., 19: 2923−2928
  32. Preston, B.L. and T.W. Snell, 2001a. Full life-cycle toxicity assessment using rotifer resting egg production: implications for ecological risk assessment. Environ. Poll., 114: 399−406
  33. Preston, B.L. and T.W. Snell, 2001b. Direct and indirect effects of sublethal toxicant exposure on population dynamics of freshwater rotifers: a modeling approach. Aquatic Toxicology, 52: 87−90
  34. Ruppert, E.E. and R.D. Barnes, 1994. Invertebrate Zoology. Sanders College Publishing, Forth Worth. 1056pp
  35. Shapiro, S.S. and M.B. Wilk, 1965. An analysis of variance test for normality (complete samples). Biometrika, 52: 591−611
  36. Snedecor, G.W. and W.G. Cochran, 1989. Statistical Methods, Eighth Edition, Iowa State University Press
  37. Snell, T.W. and F.H. Hoff, 1988. Recent advances in rotifer culture. Aquaculture Mag., 14: 41−55
  38. Snell, T.W. and G. Persoone, 1989. Acute toxicity bioassays using rotifers. I. A test for brackish and marine environments with Brachionus plicatilis. Aquatic Toxicology, 14: 65−80
  39. Snell, T.W., B.D. Moffat, C. Janssen and G. Persoone, 1991a. Acute toxicity tests using rotifers. III. Effect of temperature, strain, and exposure time on the sensitivity of Brachionus plicatilis. Environ. Toxicol. Water Qual., 6: 63−75
  40. Snell, T.W., B.D. Moffat, C. Janssen and G. Persoone, 1991b. Acute toxicity tests using rotifers. IV. Effects of cyst age, temperature and salinity on the sensitivity of Brachionus calyciflorus. Ecotox icology and Environmental Safety, 21: 63−75
  41. Snell, T.W. and M. Serra, 2000. Using probability of extinction to evaluate the ecological significance of toxicant effect. Environ. Toxicol. Chem., 19: 2357−2363
  42. Suillivan, B.K., E. Buskey, D. Miller and P.J. Ritacco, 1983. Effects of copper and cadmium on growth, swimming and predator avoidance on Eurytemora affinis (Copepoda). Mar. Biol., 77: 299−306
  43. USEPA, 2002. Methods for measuring the acute toxicity of effluents and receiving water to freshwater and marine organisms. United States Environmental Protection Agency, 122pp
  44. Wallace, R.L. and T.W. Snell, 1991. Rotifera. In: Ecology and classification of North american Freshwater Invertebrates, edited by Thorp, J.H. and A.P. Covich, Academic Press, New York
  45. Wheelock, C.E., T.A. Baumgartner, J.W. Newman, MF. Wolfe and R.S. Tjeerdema, 2002. Effect of nutritional state on Hsp60 levels in the rotifer Brachionus plicatilis following toxicant exposure. Aquatic Toxicology, 61: 89−93
  46. Wheelock, C.E., M.F. Wolfe, H. Olsen and R.S. Tjeerdema, 1998. Characterization of Hsp60 response in the rotifer, Brachionus plicatilis, exposed to multiple environmental contaminants. Marine Environmental Research, 46: 453−456
  47. Zanders, I.P. and W.E. Rojas, 1992. Cadmium accumulation, LC50 and oxygen consumption in the tropical marine amphipod Elasmopus rapax. Mar. Biol., 113: 409−413