DOI QR코드

DOI QR Code

Calculation of the Electromagnetic Wave Ields Near Electric Power Lines

전력선로 근방의 전자파 전자계 계산

  • 강대하 (부경대학교 전기제어공학부) ;
  • 이영식 (부경대학교 전기제어공학부) ;
  • 박정은 (부경대학교 전기제어공학부)
  • Published : 2008.06.30

Abstract

In this study electromagnetic fields near electric power lines were derived by dipole antenna theory and electromagnetic fields near 3 phase power lines with vertical configurations were formulated and could be computed easily using these formula. It seems that those formula could be applicable to the consideration of electromagnetic fields during the design of transmission and distribution lines. Those formulated equations on elements of electromagnetic fields were applied to the model of a transmission-line system and were calculated by Matlab programs. The calculation results are follows. For variation of horizontal distance profiles of $E_y$ and $B_z$ are same each other, and also those of $B_y$ and $E_z$ are same each other. This means that coupled elements of E and B are perpendicular each other and have the propagation direction of the right-hand system such as $x{\rightarrow}E_y{\rightarrow}B_z$. Resultant electric field E is dominated by the element $E_y$ and resultant magnetic field B is dominated by the element $B_z$.

본 연구에서는 전력선 근방의 전자파 전자계를 쌍극자 안테나 이론에 의해 도출하였으며 수직 전선배열의 3상전력선 근방의 전자계를 정식화함으로써 전자계 계산을 쉽게 할 수 있도록 하였다. 이 계산식들은 송전선로 및 배전선로의 설계시 전자파 전자계의 검토에 활용할 수 있을 것으로 생각된다. 이와 같이 정식화한 각 전자계 성분요소의 식들을 송전선로 모델에 적용하였으며 매틀랩 프로그램을 작성하여 계산하였다. 이 계산 결과를 요약하면 다음과 같다. 전자계의 x성분 $B_x$$E_x$는 무시할 수 있을 정도의 작은 값을 나타내며 대지내의 반사파에 의한 영향만을 반영한다. 수평거리 변화에 대하여 $E_y$$B_z$의 윤곽이 같으며, $B_y$$E_z$의 윤곽도 같다. 이와 같은 사실은 전자파 전계와 자계의 결합요소가 서로 직각으로서 $x{\rightarrow}E_y{\rightarrow}B_z$와 같은 우수계의 전파방향을 갖고 있음을 의미한다. 합성전계 E는 $E_y$요소가 지배적이며 합성자계 B는 $B_z$요소가 지배적이다.

Keywords

References

  1. N.W.Wertheimer, E.Leeper, "Electrical wiring configurations and childhood cancer", Am.J.Epidemiology, Vol. 109, pp. 273-284, 1979 https://doi.org/10.1093/oxfordjournals.aje.a112681
  2. Isaka K.etal, "ELF electric and magnetic fields with human body", Proc.1988 U.S- Japan Seminar on Eletromagnetic-Interference in Highly Advanced Social Systems(Modeling, Characterization, Evaluation and Protection), No. 7, pp. 21-30, Hawaii, 1998
  3. Xi W., Stuchly MA., Gandhi OP., "High resolution organ dosimetry for human exposure to low-frequency electric fields", IEEE Trans. Biomed. Eng. Vol. 41, pp. 1018-1023, 1994 https://doi.org/10.1109/10.335839
  4. Dawson TW., Caputa K., Stuchly MA., "Influence of human model resolution on computed currents induced in organs by 60Hz magnetic fields", Bioelectromagnetics, Vol. 18, pp. 478-490, 1997 https://doi.org/10.1002/(SICI)1521-186X(1997)18:7<478::AID-BEM3>3.0.CO;2-#
  5. Feng Liu, Huawei Zhao and Stuart Crozier, "Calculation of electric fields induced by body and head motion in high-field MRI", Journal of Magnetic Resonance, Vol. 161, Issue 1, pp. 99-107, 2003 https://doi.org/10.1016/S1090-7807(02)00180-5
  6. Dragan Poljak, Andres Peratta and Carios A. Brebbia, "The boundary element electromagnetic-thermal analysis of human exposure to base station antennas radiation", Engineering Analysis with Boundary Elements, Vol. 28, Issue 7, pp. 763-770, 2004 https://doi.org/10.1016/j.enganabound.2004.02.004
  7. Yu-nan Han, Ying-hua LV and Hong-xin Zhang, "Compute extremely low- frequency electromagnetic field exposure by 3-D impedance method", The Journal of China Universities of Posts and Telecommunications, Vol. 14, Issue 3, pp. 113-116, 2007 https://doi.org/10.1016/S1005-8885(07)60160-5
  8. Sarma Maruvada P., "Characterization of power frequency magnetic fields in different environments", IEEE Transactions on Power Delivery, Vol. 8, No. 3, pp. 598-605, 1993. https://doi.org/10.1109/61.216866
  9. Dragon Poljak, Youssef F. Rashed, "The boundary element modeling of human body exposed to the ELF electromagnetic fields," Engineering Analysis with Boundary Elements, Vol. 27, pp. 871-875, 2002
  10. Dragon Poljak, Vicko Doric ,Damir Vucicic, C.A Brebbia, "boundary element modeling of radio base statio antennas," Engineering Analysis with Boundary Elements, Vol. 30, pp. 419-425, 2006. https://doi.org/10.1016/j.enganabound.2006.02.001
  11. Han Yu-nan LV Ying-hua, Zhang Hong-xin, "Compute extremely low-frequency electromagnetic field exposure by 3-D impedance method," the Journal of China Universities of Posts and Telecommunications, Vol. 14, Issue 3, pp. 113-116, 2007. https://doi.org/10.1016/S1005-8885(07)60160-5
  12. A.S. Frag, M.M. Dawoud, T.C. Cheng, Jason S. Cheng, "Occupational exposure assesment for power frequency electromagnetic fields," Electric Power Systems Research, Vol. 48, pp. 151-175, 1999. https://doi.org/10.1016/S0378-7796(98)00086-8
  13. V. Doric, D. Poljak,V. Roje, "Transient analysis of the grounding electrode based on the wire antenna theory," Engineering Analysis with Boundary Elenments, Vol. 28, pp. 801-807, 2004 https://doi.org/10.1016/j.enganabound.2003.11.001
  14. Dragon Poljak, Snisa Antonijevic, Carlos A. Brebbia, "Time domain modeling of thin wire arrays in the presence of a two media configuration using the boundary element analysis," Engineering Analysis with Boundary Elenments, Vol. 31, pp. 706-712, 2007 https://doi.org/10.1016/j.enganabound.2007.01.002
  15. Ronald W.P. King, Tai T. Wu, " The complete electromagnetic field of a three-phase transmission line over the earth and its interaction with the human body", J.Appl.Phys. Vol. 78, No. 2, pp. 668-683, 1995 https://doi.org/10.1063/1.360325
  16. Ronald W.P.King, "The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region", J.Appl.Phys. Vol. 69, No. 12, pp. 7987-7995, 1991 https://doi.org/10.1063/1.347494

Cited by

  1. Calculation and Mitigation of Magnetic Field Produced by Straight Line-Conductor with Finite Length vol.25, pp.6, 2011, https://doi.org/10.5207/JIEIE.2011.25.6.057