Ultrasonic Nonlinearity Parameter Due to Precipitate and Dislocation

석출물과 전위에 기인한 초음파 비선형성 파라미터

  • 김정석 (서울산업대학교 기계공학과) ;
  • 박익근 (서울산업대학교 기계공학과)
  • Published : 2008.07.01

Abstract

The microstructural effects on the ultrasonic nonlinearity were investigated in isothermally degraded ferritic 2.25Cr-1Mo steel and low cycle fatigued copper. The variation in ultrasonic nonlinearity (${\beta}/{\beta}_0$) was interpreted as resulting from microstructural changes supported by the electron microscopy and X-ray diffraction, in addition to the mechanical test (Victor's hardness and ductile-brittle transition temperature). The ultrasonic nonlinearity of 2.25Cr-1Mo steel increased abruptly in the initial 1,000 h of degradation, and then changed little due to the coarsening of carbide and precipitation of stable $M_6C$ carbide during isothermal degradation. The ultrasonic nonlinearity of copper increased with the fatigue cycles due to the evolution of dislocation cell substructure.

Keywords

References

  1. Achenbach, J. D., 'Quantitative nondestructive evaluation,' Inter. J. Sol. Struct., Vol. 37, Issue 1-2, pp. 13-27, 2000 https://doi.org/10.1016/S0020-7683(99)00074-8
  2. Tompson, R. B., 'Laboratory nondestructive evaluation technology for materials characteri-zation,' J. Nondest. Eval., Vol. 15, No. 3-4, pp. 163-176, 1996 https://doi.org/10.1007/BF00732043
  3. Kim, J. P., Seok, C. S., Song, S. J. and Kim, Y. H., 'A Study of the Evaluation of Material Degradation for 1Cr-1Mo-0.25V Steel using Linear and Nonlinear Ultrasonics,' J. Korean Soc. Nondest. Testing, Vol. 21, No. 5, pp. 549-555, 2001
  4. Jeong, H. J., Nahm, S. H., Jhang, K. Y. and Nam, Y. H., 'Estimation of Fracture Toughness Degradation of High Temperature Materials by Nonlinear Acoustic Effects,' J. Korean Soc, Nondest. Testing, Vol. 20, No. 5, pp. 424-430, 2000
  5. Kim, C. S., Kim, Y. H. and Kim, I. H., 'Ultrasonic Linear and Nonlinear Parameters in Cyclically Deformed Cu and Cu-35Zn Alloy,' Key Eng. Mater., Vol. 297-300, pp. 2134-2139, 2005 https://doi.org/10.4028/www.scientific.net/KEM.297-300.2134
  6. Cantrell, J. H. and Yost, W. T., 'Nonlinear ultrasonic characterization of fatigue microstructures,' Int. J. Fatigue, Vol. 23, Supplement 1, pp. 487-490, 2001 https://doi.org/10.1016/S0142-1123(01)00162-1
  7. Cantrell, J. H. and Yost, W. T., 'Determination of precipitate nucleation and growth rates from ultrasonic harmonic generation,' Appl. Phys. Lett., Vol. 77, No. 13, pp. 1952-1954, 2000 https://doi.org/10.1063/1.1311951
  8. Hurley, D. C., Balzar, D., Purtscher, P. T. and Hollman, K. W., 'Nonlinear ultrasonic parameter in quenched martensitic steel,' J. Appl. Phys., Vol. 83, No. 9, pp. 4584-4588, 1998 https://doi.org/10.1063/1.367241
  9. Stahlkopf, K. E., Smith, R. E., Server, W. L. and Wullaert, R. A., 'In Cracks and Fracture: STP 601,' American Society for Testing and Materials, pp. 291-307, 1975
  10. Jhang, K. Y., 'Applications of nonlinear ultrasonics to the NDE of material degradation,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 47, No. 3, pp. 540-548, 2000 https://doi.org/10.1109/58.842040
  11. Gope, N., Chatterjee, A., Mukherjee, T. and Sarma, D. S., 'Influence of Long-Term Aging and Superimposed Creep Stress on the Microstructure of 2.25Cr-1Mo Steel,' Metall. Trans., Vol. 24A, No. 2, pp. 315-326, 1993
  12. Adbel-Latif, A. M., Corbett, J. M. and Taplin, D. M. R., 'Analysis of Carbides Formed During Accelerated Aging of 2.25Cr-1Mo Steel,' Met. Sci., Vol. 16, No.2, pp. 90-96, 1982 https://doi.org/10.1179/030634582790427181
  13. Stevens, R. A. and Lonsdale, D., 'Isolation, identification and quantification by X-ray diffraction of carbide phases in 2 1/4Cr-1 Mo steel,' J. Mater. Sci., Vol. 20, No. 10, pp. 3631-3638, 1985 https://doi.org/10.1007/BF01113770
  14. Cheruvu, N. S., 'Degradation of Mechanical Properties of Cr-Mo-V and 2.25Cr-1Mo Steel Components After Long-Term Service at Elevated Temperatures,' Metall. Trans., Vol. 20A, No. 1, pp. 87-97, 1989
  15. Qu, Z. and Kuo, K. H., 'Embrittlement of 2.25CrMoV Steel Bolts After Long Exposure at $540^{\circ}C$,' Metall. Trans., Vol. 12A, No. 7, pp. 1333-1337, 1981
  16. Lukas, P. and Klesnil, M., 'Cyclic stress-strain response and fatigue life of metals in low amplitude region,' Mater. Sci. Eng., Vol. 11, No. 6, pp. 345-356, 1973 https://doi.org/10.1016/0025-5416(73)90125-0
  17. Feltner, C. E. and Laird, C., 'Cyclic stress-strain response of F.C.C. metals and alloys-II Dislocation structures and mechanisms,' Acta Metall., Vol. 15, No. 10, pp. 1633-1653, 1967 https://doi.org/10.1016/0001-6160(67)90138-1