DOI QR코드

DOI QR Code

Anti-angiogenic, Anti-inflammatory and Anti-nociceptive Activities of Vanillin in ICR Mice

  • Lim, Eun-Ju (College of Pharmacy, Sookmyung Women's University) ;
  • Kang, Hyun-Jung (Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University) ;
  • Jung, Hyun-Joo (College of Pharmacy, Sookmyung Women's University) ;
  • Song, Yun-Seon (College of Pharmacy, Sookmyung Women's University) ;
  • Lim, Chang-Jin (Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University) ;
  • Park, Eun-Hee (College of Pharmacy, Sookmyung Women's University)
  • Published : 2008.06.30

Abstract

The current study aimed to assess some novel pharmacological activities of vanillin. Vanillin inhibited the chick chorioallantoic membrane (CAM) angiogenesis. Vanillin had anti-inflammatory activity using the acetic acid-induced permeability model in mice. Anti-nociceptive activity of vanillin was shown using the acetic acid-induced writhing test in mice. Vanillin inhibited production of nitric oxide (NO) and induction of inducible nitric oxide synthase (iNOS) but not cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Vanillin decreased the level of iNOS mRNA in the LPS-activated macrophages. Taken together, these results suggest that vanillin can have anti-angiogenic, anti-inflammatory and anti-nociceptive activities in ICR Mice.

Keywords

References

  1. Ahn, E. K., Jeon, H. J., Lim, E. J., Jung, H. J. and Park, E. H. (2007) Anti-inflammatory and anti-angiogenic activities of Gastrodia elata Blume. J. Ethnopharmacol. 110, 476-482 https://doi.org/10.1016/j.jep.2006.10.006
  2. Cao, Y., Zhang, X., Fang, Y. and Ye, J. (2001) Determination of the active ingredients in Gastrodia rhizome by capillary electrophoresis with electrochemical detection. Analyst 126, 1524-1528 https://doi.org/10.1039/b103653j
  3. Chesrown, S. E., Monnier, J., Visner, G. and Nick, H. S. (1994) Regulation of inducible nitric oxide synthase mRNA levels by LPS, INF-gamma, TGF-beta, and IL-10 in murine macrophage cell lines and rat peritoneal macrophages. Biochem. Biophys. Res. Commun. 200, 126-134 https://doi.org/10.1006/bbrc.1994.1424
  4. Cuzzocrea, S. (2006) Role of nitric oxide and reactive oxygen species in arthritis. Curr. Pharm. Des. 12, 3551-3570
  5. Durant, S. and Karran, P. (2003) Vanillins-a novel family of DNAPK inhibitors. Nucleic Acids Res. 31, 5501-5512 https://doi.org/10.1093/nar/gkg753
  6. Freshney, R. I. (1994) Culture of animal cells: a manual of basic technique. 4th ed., pp. 336-338, Wiley-Liss Press, New York
  7. Gustafson, D. L., Franz, H. R., Ueno, A. M., Smith, C. J., Doolittle, D. J. and Waldren, C. A. (2000) Vanillin (3-methoxy-4- hydroxybenzaldehyde) inhibits mutation induced by hydrogen peroxide, N-methyl-N-nitrosoguanidine and mitomycin C but not 137Cs gamma radiation at the CD59 locus in humanhamster hybrid A(L) cells. Mutag. 15, 207-213 https://doi.org/10.1093/mutage/15.3.207
  8. Kamat, J. P., Ghosh, A. and Devasagayam, T. P. A. (2000) Vanillin as an antioxidant in rat lever mitochondria: Inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Mol. Cell. Biochem. 209, 47-53 https://doi.org/10.1023/A:1007048313556
  9. Kim, H. J., Hwang, I. K. and Won, M. H. (2007) Vanillin, 4- hydroxybenzyl aldehyde and 4-hydroxybenzyl alcohol prevent hippocampal CA1 cell death following global ischemia. Brain Res. 1181, 130-141 https://doi.org/10.1016/j.brainres.2007.08.066
  10. Kumar, S. S., Priyadarsini, K. I. and Sainis, K. B. (2004) Inhibition of peroxynitrite-mediated reactions by vanillin. J. Agri. Food Chem. 52, 139-145 https://doi.org/10.1021/jf030319d
  11. Lim, E. J., Kang, H. J., Jung, H. J. and Park, E. H. (2007) Antiangiogenic, anti-inflammatory and anti-nociceptive activity of 4-hydroxybenzyl alcohol. J. Pharm. Pharmacol. 59, 1235- 1240 https://doi.org/10.1211/jpp.59.9.0007
  12. Lirdprapamongkol, K., Sakurai, H., Kawasaki, N., Choo, M. K., Saitoh, Y., Aozuka, Y., Singhirunnusorn, P., Ruchirawat, S., Svasti, J. and Saiki, I. (2005) Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. Eur. J. Pharm. Sci. 25, 57-65 https://doi.org/10.1016/j.ejps.2005.01.015
  13. Ojemann, L. M., Nelson, W. L., Shin, D. S., Rowe, A. O. and Buchanan, R. A. (2006) Tien ma, an ancient Chinese herb, offers new options for the treatment of epilepsy and other conditions. Epi. Behav. 8, 376-383 https://doi.org/10.1016/j.yebeh.2005.12.009
  14. Olajide, O. A., Awe, S. O., Makinde, J. M., Ekhelar, A. I., Olusola, A., Morebise, O. and Okpako, D. T. (2000) Studies on the anti-inflammatory, antipyretic and analgesic properties of Alstonia boonei stem bark. J. Ethnopharmacol. 71, 179-186 https://doi.org/10.1016/S0378-8741(99)00200-7
  15. Sherman, M. P., Aeberhard, E. E., Wong, V. Z., Griscavage, J. M. and Ignarro, L. J. (1993) Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun. 191, 1301- 1308 https://doi.org/10.1006/bbrc.1993.1359
  16. Song, Y. S., Kim, S. H., Sa, J. H., Jin, C., Lim, C.-J. and Park, E.-H. (2003) Anti-angiogenic, antioxidant and xanthine oxidase inhibition activities of the mushroom Phellinus linteus. J. Ethnopharmacol. 88, 113-116 https://doi.org/10.1016/S0378-8741(03)00178-8
  17. Vogel, H. G. and Vogel, W. H. (1997) Drug Discovery and Evaluations, Pharmacological Assays. Springer, Berlin, pp. 402- 403
  18. Whittle, B. A. (1964) The use of changes in capillary permeability in mice to distinguish between narcotic and nonnarcotic analgesics. Brit. J. Pharmacol. Chemother. 22, 246-253 https://doi.org/10.1111/j.1476-5381.1964.tb02030.x

Cited by

  1. Homodimers of Vanillin and Apocynin Decrease the Metastatic Potential of Human Cancer Cells by Inhibiting the FAK/PI3K/Akt Signaling Pathway vol.65, pp.11, 2017, https://doi.org/10.1021/acs.jafc.6b05697
  2. Anti-angiogenic, anti-inflammatory and anti-nociceptive activities of vanillyl alcohol vol.31, pp.10, 2008, https://doi.org/10.1007/s12272-001-2106-1
  3. Reduction of Inflammatory Responses and Enhancement of Extracellular Matrix Formation by Vanillin-Incorporated Poly(Lactic-co-Glycolic Acid) Scaffolds vol.18, pp.19-20, 2012, https://doi.org/10.1089/ten.tea.2012.0001
  4. Biological activities of lignin hydrolysate-related compounds vol.45, pp.5, 2012, https://doi.org/10.5483/BMBRep.2012.45.5.265
  5. Spectroscopic analyses on interaction of o-Vanillin-d-Phenylalanine, o-Vanillin-l-Tyrosine and o-Vanillin-l-Levodopa Schiff Bases with bovine serum albumin (BSA) vol.78, pp.4, 2011, https://doi.org/10.1016/j.saa.2010.12.077
  6. 4-Hexyloxy-3-methoxybenzaldehyde vol.65, pp.6, 2009, https://doi.org/10.1107/S1600536809017358
  7. Anti-inflammatory Activities of ElevenCentaureaSpecies Occurring in the Carpathian Basin vol.27, pp.4, 2013, https://doi.org/10.1002/ptr.4754
  8. Anti-inflammatory and antinociceptive activities ofHomalium letestui vol.51, pp.11, 2013, https://doi.org/10.3109/13880209.2013.799707
  9. Reduction of oxidative stress by p-hydroxybenzyl alcohol-containing biodegradable polyoxalate nanoparticulate antioxidant vol.32, pp.11, 2011, https://doi.org/10.1016/j.biomaterials.2010.11.033
  10. Study of the Interaction between Three New Amantadine Schiff Bases and BSA by the Multi-Spectroscopic Method vol.239-240, pp.1662-7482, 2012, https://doi.org/10.4028/www.scientific.net/AMM.239-240.193
  11. -Bis(4-hexyloxy-3-methoxybenzylidene)ethane-1,2-diamine vol.66, pp.6, 2010, https://doi.org/10.1107/S1600536810017125
  12. Anti-Inflammatory, Anti-Angiogenic and Anti-Nociceptive Activities of 4-Hydroxybenzaldehyde vol.16, pp.3, 2008, https://doi.org/10.4062/biomolther.2008.16.3.231
  13. Evaluation on Pharmacological Activities of 2,4-Dihydroxybenzaldehyde vol.17, pp.3, 2009, https://doi.org/10.4062/biomolther.2009.17.3.263
  14. Oral Administration of Vanillin Improves Imiquimod-Induced Psoriatic Skin Inflammation in Mice vol.65, pp.47, 2008, https://doi.org/10.1021/acs.jafc.7b04259
  15. Therapeutic Potential of Vanillin and its Main Metabolites to Regulate the Inflammatory Response and Oxidative Stress vol.19, pp.20, 2008, https://doi.org/10.2174/1389557519666190312164355
  16. Quinoa Secondary Metabolites and Their Biological Activities or Functions vol.24, pp.13, 2008, https://doi.org/10.3390/molecules24132512