Effects of Green Tea Extract on Intestinal Mucosal Esterification of $^{14}C$-Oleic Acid in Rats

녹차 추출물이 흰쥐 소장세포의 지방 에스테르화 과정에 미치는 영향

  • Seo, Yun-Jung (Department of Food and Nutrition, Changwon National University) ;
  • Noh, Sang-K. (Department of Food and Nutrition, Changwon National University)
  • 서윤정 (국립창원대학교 식품영양학과) ;
  • 노상규 (국립창원대학교 식품영양학과)
  • Published : 2008.06.30

Abstract

Previously, we have shown that green tea extract lowers the intestinal absorption of cholesterol, fat, and other fat-soluble compounds. We conducted this study to determine whether green tea extract affects the rate of $^{14}C$-oleic acid esterification into various lipids in the intestinal mucosa of rats. Male Sprague-Dawley ruts were had free access to a nutritionally adequate AIN-93G diet and deionized water. Initially, the rat's mucosal content of total lipids was measured following 1 mL olive oil administration with (green tea group) or without (control group) 100 mg green tea extract powder. At 1 h and 5 h, intestinal segments were extracted for total lipid analysis. Secondly, to measure mucosal esterification rates of lipids, an abdominal incision was made along the midline, and a 10-cm long jejunal segment of the small intestine was ligated in situ. Then, micellar solutions with or without green tea extract were injected into the ligated jejunal segments and incubated for 10 mill. The micellar solution contained $200.0\;{\mu}$ Ci $^{14}C$-oleic acid, $200.1\;{\mu}mol$ unlabelled oleic acid, $66.7\;{\mu}mol$ 2-monooleoylglycerol, $66.7\;{\mu}mol$ palmitoyl-sn-glycero-3-phosphocholine, 2.2 mmol glucose, $50.0\;{\mu}mol$ albumin, and 16.5 mmol Na-taurocholate per L of phosphate buffered saline (pH, 6.3) with or without 8.87 g green tea extract powder. At 10 min, each rat was sacrificed by cervical dislocation under anesthesia and the segment was removed for lipid analysis. Significant differences were observed in mucosal triglyceride content at 1 h and 5 h in ruts given green tea extract. Significant differences in the rate of $^{14}C$-oleic acid esterification into triglycerides and phospholipids fractions were observed between control and green tea groups. However, There were no significant differences in other lipid fractions. These results indicate that the lowered esterification rates of $^{14}C$-oleic acid into triglycerides and phospholipids fractions is attributable to presence of green tea extract. This may be associated with an inhibitory effect of green tea catechin on the mucosal processes of lipids, leading to the inhibition of intestinal absorption of lipids.

이 실험은 녹차추출물이 흰쥐 소장mucosa에서 $^{14}C$-oleic acid의 에스테르화 과정에 어떤 영향을 미치는지를 조사하기 위해서 설계되었다 먼저, olive oil을 구강으로 강제 투여했을 때, 1시간 그리고 5시간 후에, 녹차 성분의 변수에 의해서 소장 mucosa 내에 축적된 중성지방이 얼마나 감소하는지를 조사하였다. 그리고 소장세포 내에서 녹차 성분에 의해서 각종 지방으로 $^{14}C$-oleic acid의 분배비율이 영향을 받는지 조사하였다. 이 실험에 사용된 micelle 용액은 $200.0\;{\mu}Ci$ $^{14}C$-oleic acid, $200.1\;{\mu}mol$ oleic acid, $200.1\;{\mu}mol$ 2-monooleoylglycerol, $66.7\;{\mu}mol$ palmitoyl-sn-glycero-3-phosphocholine, 2.2 mmol glucose, $50.0\;{\mu}mol$ albumin, 그리고 16.5 mmol Na-taurocholate per L of phosphate buffered saline (pH, 6.3)를 기본으로 하며, 실험군의 micelle 용액은 녹차추출물 분말(green tea extract powder)이 8.87 g/L의 농도로 추가되었다. Ligament of Treitz 부위 에 연결된 소장 부위의 양 끝을 살균 처리된 suture silk(4-0 Silk)로 느슨하게 매듭처리 한 후, $800.0\;{\mu}L$ micelle 용액을 매듭 처리된 소장의 윗매듭 속으로 주입하여, 장기 및 부속기관을 원위치시켰다. 10분 후에, cervical dislocation 방법으로 희생시킨 후 매듭된 소장 부위를 꺼내어 장내용물(luminal content)의 잔존 $^{14}C$-oleic acid를 측정하였다. 획득된 소장 벽에서 각종 지방으로 $^{14}C$-oleic acid의 분배율을 측정하였다. 소장 mucosa에서 총지방량은 녹차추출물에 의해서 영향을 받지 않았으나, 이중 중성지방의 비율은 유의적으로 감소되었다. 또한 소장 벽에서 각종지방으로 $^{14}C$-oleic acid의 분배율은 녹차추출물에 의해서, 중성지방과 인지질 분획에서 유의적인 감소현상을 보였다. 이 실험은, 이전 동물실험들에서 누차 보고되었던, 녹차추출물에 의한 소장 지방 흡수 억제 현상은 $^{14}C$-oleic acid의 에스테르화 비율과 상관성이 있는 것으로 제시하고 있다.

Keywords

References

  1. Cabrera, C. Artacho, R. and Gimenez, R. (2006) Beneficial effects of green tea--a review. J. Am. Coll. Nutr., 25, 79-99 https://doi.org/10.1080/07315724.2006.10719518
  2. Harbowy, M.E. and Balentine, D. (1997) Tea chemistry, Critical Rev. Plant Sci. 16, 415-80 https://doi.org/10.1080/713608154
  3. Graham, H.N. (1992) Green tea composition, consumption, and polyphenol chemistry. Prev. Med., 21, 334-350 https://doi.org/10.1016/0091-7435(92)90041-F
  4. Wang, S., Noh, S.K. and Koo, S.I. (2006) Green tea catechins inhibit pancreatic phospholipase A$_{2}$ and intestinal absorption of lipids in ovariectomized rats. Alcohol and skeletal muscle disease. J. Nutr. Biochem., 17, 492-498 https://doi.org/10.1016/j.jnutbio.2006.03.004
  5. LӦest, H.B., Noh, S.K. and Koo, S.I. (2002) Green tea extract inhibits the lymphatic absorption of cholesterol and $\alpha$-tocopherol in ovariectomized rats. J. Nutr., 132, 1282-1288
  6. Muramatsu K, Fukuyo, M. and Hara, Y. (1986) Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J. Nutr. Vitaminol., 32, 613-622 https://doi.org/10.3177/jnsv.32.613
  7. Yang, T.T.C. and Koo, M.W.L. (1997) Hypocholesterolemic effects of Chinese tea. Pharmacol. Res., 35, 505-512 https://doi.org/10.1006/phrs.1997.0176
  8. Suzuki, H, Ishigaki, A. and Hara, Y. (1998) Long-term effect of a trace amount of tea catechins with perilla oil on the plasma lipids in mice. Internat. J. Vit. Nutr. Res., 68, 272-274
  9. Chan, P.T., Fong, W.P., Cheung, Y.L., Huang, Y., Ho, W.K.K. and Chen, Z.Y. (1999) Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. J. Nutr., 129, 1094-1101
  10. Hayek, T., Fuhrman, B., Vaya, J., Rosenblat, M., Belinky, P., Coleman, R., Elis, A. and Aviram, M. (1997) Reduced progression of atherosclerosis in apo E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler. Thromb. Vasc. Biol., 17, 2744-2752 https://doi.org/10.1161/01.ATV.17.11.2744
  11. Xu, R., Yokoyama, W.H., Irving, E., Rein, D., Walzem, R.L. and German, J.B. (1998) Effect of dietary catechin and vitamin E on aortic fatty streak accumulation in hypercholesterolemic hamsters. Atherosclerosis, 137, 29-36 https://doi.org/10.1016/S0021-9150(97)00248-7
  12. Chyu, K.Y., Babbidge, S.M., Zhao, X., Dandillaya, R., Rietveld, A.G. and Yano, J. (2004) Differential effects of green tea-derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice. Circulation, 109, 2448-2453 https://doi.org/10.1161/01.CIR.0000128034.70732.C2
  13. van het Hof, K.H., Wiseman, S.A., Yang, C.S. and Tijburg, L.B.M. (1999) Plasma and lipoprotein levels of tea catechins following repeated tea consumption. Proc. Soc. Exp. Biol. Med., 220, 203-209
  14. Hodgson, J.M, Croft, K.D., Mori, T.A., Burke, V., Beilin, L.J. and Puddey, I.B. (2002) Regular ingestion of tea does not inhibit in vivo lipid peroxidation in humans. J. Nutr., 132, 55-58
  15. Wang, S., Noh, S.K. and Koo, S.I. (2006) Epigallo- catechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats. J. Nutr. 136, 2791-2796 https://doi.org/10.1093/jn/136.11.2791
  16. Koo, S.I. and Noh, S.K. (2007) Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J. Nutr. Biochem., 18, 179-183 https://doi.org/10.1016/j.jnutbio.2006.12.005
  17. Dalluge, J.J., Nelson, B.C., Thomas, J.B. and Sander, L.C. (1998) Selection of column and gradient elution system for the separation of catechins in green tea using high-performance liquid chromatography. J. Chromatogr., A 793, 265-274 https://doi.org/10.1016/S0021-9673(97)00906-0
  18. Reeves, P.G., Nielson, F.H. and Fahey Jr, G.C. (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 123, 1939-1951 https://doi.org/10.1093/jn/123.11.1939
  19. Folch, J., Lees, M. and Sloane-Stanley, G.H. (1957) A simple method for the isolation and purification of total lipides from animals tissues. J. Biol. Chem., 226, 497-509
  20. Noh, S.K and Koo, S.I. (1997) The lymphatic absorption of lipids is normalized by enteral phosphatidylcholine infusion in ovariectomized rats with estrogen replacement. J. Nutr. Biochem., 8, 152-161 https://doi.org/10.1016/S0955-2863(97)00014-4
  21. Tso, P. and Fujimoto, K. (1991) The absorption and transport of lipids by the small intestine. Brain Res. Bull., 27, 477-482 https://doi.org/10.1016/0361-9230(91)90145-A
  22. Leslie, E.M., Mao, Q., Oleschuk, C.J., Deeley, R.G. and Cole, S.P. (2001) Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and ATPase activities by interaction with dietary flavonoids. Mol. Pharmacol., 59, 1171-1180 https://doi.org/10.1124/mol.59.5.1171
  23. Conseil, G., Baubichon-Cortay, H., Dayan, G., Jault, J.M., Barron, D. and Di Pietro, A. (1998) Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc. Natl. Acad. Sci. U.S.A., 95, 9831-9836