Comparison of Soil Nutrient Status in Conventional and Organic Apple Farm

관행농 및 유기농 사과과수원 토양의 양분함량 비교

  • Chung, Jong-Bae (Division of Life and Environmental Sciences, Daegu University) ;
  • Lee, Yoon-Jung (Division of Life and Environmental Sciences, Daegu University)
  • 정종배 (대구대학교 생명환경학부) ;
  • 이윤정 (대구대학교 생명환경학부)
  • Received : 2007.12.13
  • Accepted : 2008.01.12
  • Published : 2008.02.28

Abstract

Soil nutrient status in an organic apple farm was evaluated in relation to a conventional farm to better understand the effects of organic farming system on soil fertility. Soil organic matter, total and mineral N, available P, exchangeable cations, and available micronutrients were monitored at depth of 5-20 cm from May to October in 2006. Average soil organic matter content was 63.3 and $31.0g\;kg^{-1}$ in organic and conventional farm, respectively. Total N content was 3.3 and $1.7g\;kg^{-1}$ in average for organic and conventional farm, respectively. Ammonium and nitrate N in organic farming were maintained at relatively stable levels, but in the conventional farm the levels were very high in early season due to the chemical fertilizer application. In the organic apple farm, available P content in May was lower than that found in the conventional farm, but during the growing season available P content was continuously increased and in August the content was more than $1000mg\;P_2O_5\;kg^{-1}$. The organic farm maintained relatively greater exchangeable K, Ca, and Mg levels than the conventional farm. Available Cu, Fe, and Mn contents in the conventional farm were relatively greater than those found in the organic farm. However, available Zn extracted in 0.1 M HCl was much greater in the organic farm. Nutrient levels above crop needs were observed in both conventional and organic apple farm suggesting a more appropriate management of soil nutrients in organic farming to secure its fundamental functions for the sustainable agriculture.

유기농업체계가 토양의 비옥도와 지속가능성에 미치는 영향을 파악하기 위하여 유기농 사과과수원 토양의 양분상태를 관행농과 비교하여 조사하였다. 동일한 토양에 조성된 인접한 유기농 및 관행농 사과과수원을 선정하여 2006년 5월부터 10월까지 월별로 5-20 cm 깊이의 토양을 채취하였으며, 유기물, 총 질소 및 무기질소, 유효인산, 교환성 양이온, 가용성 미량원소의 함량을 조사하였다. 평균 유기물 함량은 유기농과 관행농 과수원 토양에서 각각 63.3 및 $31.0g\;kg^{-1}$으로 유기농 과수원 토양에서 훨씬 높았다. 총 질소 함량은 평균값으로 유기농과 관행농 과수원 토양에서 각각 3.3 및 $1.7g\;kg^{-1}$이었다. 유기농 과수원 토양에서는 암모늄 및 질산태 질소 함량이 작기 중에 비교적 안정한 수준을 지속적으로 유지하였으나 관행농 과수원 토양에서는 화학비료 시용으로 인하여 조사 초기에 그 함량이 아주 높았으며 8월까지 급격히 감소하였다. 유기농 과수원의 경우 유효인산은 5월에는 관행농 과수원에 비하여 낮았으나, 작기가 진행되면서 지속적으로 증가하여 8월에는 그 함량이 $1000mg\;P_2O_5\;kg^{-1}$ 이상으로 나타났다. 유효인산은 관행농과 유기농 과수원 모두에서 적정수준인 $200-300mg\;P_2O_5\;kg^{-1}$보다 훨씬 높았다. 교환성 K, Ca, Mg 함량은 관행농에 비하여 유기농 과수원 토양에서 상대적으로 높았다. 가용성 Cu, Fe, Mn 함량은 관행농 과수원 토양에서 높았으며, 0.1 N HCl 가용성 Zn 함량은 반대로 유기농 과수원 토양에서 높았다. 이상의 결과에서 보면 관행농과 유기농 과수원 토양 모두에서 각종 양분함량이 적정수준보다 높은 것으로 나타났으며, 화학비료를 사용하는 관행농에 비하여 유기농 과수원 토양에서 각종 양분 함량이 오히려 높았다. 이러한 양분 과다 현상은 토양과 주변 환경에 부정적인 영향을 미칠 것이며, 유기농업의 근본 목적에도 벗어나는 결과이다.

Keywords

References

  1. Blaise, D., T. R. Rupa, and A. N. Bonde. 2004. Effect of organic and modern method of cotton cultivation on soil nutrient status. Commun. Soil Sci. Plant Anal. 35:1247-1261 https://doi.org/10.1081/CSS-120037543
  2. Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen Total. p. 595- 624. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2: Chemical and microbiological properties. SSSA, Madison, WI, USA
  3. Bulluck, L. R., M. Brosius, G. K. Evanylo, and J. B. Ristaino. 2002. Organic and synthetic amendments influence soil microbial, physical and shemical properties on organic and conventional farms. Appl. Soil Ecol. 19:147-160 https://doi.org/10.1016/S0929-1393(01)00187-1
  4. Carter, M. R. 2002. Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions. Agron. J. 94:38-47 https://doi.org/10.2134/agronj2002.0038
  5. Edmeades, D. C. 2003. The long-term effects of manures and fertilizers on soil productivity and quality: A review. Nutr. Cycl. Agroecosys. 66:165-180 https://doi.org/10.1023/A:1023999816690
  6. Gerhardt, R. A. 1997. A comparative analysis of the effects of organic and conventional farming systems on soil structure. Biol. Agric. Hort. 14:139-157 https://doi.org/10.1080/01448765.1997.9754803
  7. Gosling, P., and M. Shepherd. 2005. Long-term changes in soil fertility in organic farming systems in England, with particular reference to phosphorus and potassium. Agric. Ecosyst. Environ. 105:425-432 https://doi.org/10.1016/j.agee.2004.03.007
  8. Guerra-Rodriguez, E., J. Alonso, M. J. Melgar, and M. Vazquez. 2006. Evaluation of heavy metal contents in co-composts of poultry manure with barley wastes or chestnut burr/leaf litter. Chemosphere 65:1801-1805 https://doi.org/10.1016/j.chemosphere.2006.04.023
  9. Kabata-Pendias, A. 2001. Trace elements in soils and plants. CRC Press, Boca Raton, FL, USA
  10. Khan, S. U. 1969. Interaction between the humic acid fraction of soils and certain metallic cations. Soil Sci. Soc. Am. Proc. 33:851-854 https://doi.org/10.2136/sssaj1969.03615995003300060017x
  11. Kim, P. J., D. Y. Chung, and D. Malo. 2001. Characteristics of phosphorous accumulation in soils under organic and conventional farming in plastic film houses in Korea. Soil Sci. Plant Nutr. 47:281-289 https://doi.org/10.1080/00380768.2001.10408392
  12. Kwabiah, A. B., N. C. Stoskopf, C. A. Palm, R. P. Voroney, M. R. Rao, and E. Gacheru. 2003. Phosphorus availability and maize response to organic and inorganic fertilizer inputs in a short term study in western Kenya. Agric. Ecosyst. Environ. 95:49-59. https://doi.org/10.1016/S0167-8809(02)00167-6
  13. Laboski, C. A. M., and J. A. Lamb. 2003. Changes in soil test phosphorus concentration after application of manure or fertilizer. Soil Sci. Soc. Am. J. 67:544-554 https://doi.org/10.2136/sssaj2003.0544
  14. Lee, Y. J., D. H. Choi, S. H. Kim, S. M. Lee, Y. H. Lee, B. M. Lee, and T. W. Kim. 2004. Long-term changes in soil chemical properties in organic arable farming systems in Korea. Korean J. Soil Sci. Fert. 37:228-234
  15. Liebig, M. A., and J. W. Doran. 1999. Impact of organic production practices on soil quality indicators. J. Environ. Qual. 28:1601-1609 https://doi.org/10.2134/jeq1999.00472425002800050026x
  16. Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42:421-428 https://doi.org/10.2136/sssaj1978.03615995004200030009x
  17. Marinari, S., R. Mancinelli, E. Campiglia, and S. Grego. 2006. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol. Indic. 6:701-711 https://doi.org/10.1016/j.ecolind.2005.08.029
  18. Marriott, E. E., and M. M. Wander. 2006. Total and labile soil inorganic matter in organic and conventional farming systems. Soil Sci. Soc. Am. J. 70:950-959 https://doi.org/10.2136/sssaj2005.0241
  19. Martini, E. A., J. S. Buyer, D. C. Bryant, T. K. Hartz, and R. F. Denison. 2004. Yield increases during the organic transition: improving soil quality or increasing experience? Field Crop. Res. 86:255-266 https://doi.org/10.1016/j.fcr.2003.09.002
  20. McBride, M. B. 1982. Electron spin resonance investigation of $Mn^{2+}$ complexation in natural and synthetic organics. Soil Sci. Soc Am. J. 46:1137-1143 https://doi.org/10.2136/sssaj1982.03615995004600060004x
  21. Moreno-Caselles, J., R. Moral, M. D. Perez-Murcia, A. Perez- Espinosa, C. Paredes, and E. Agullo. 2005. Fe, Cu, Mn, and Zn input and availability in calcareous soils amended with the solid phase pig slurry. Commun. Soil Sci. Plant Anal. 36:525-534 https://doi.org/10.1081/CSS-200043279
  22. Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p. 539-579. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2: Chemical and microbiological properties. SSSA, Madison, WI, USA
  23. NIAST. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, Suwon, Korea
  24. NIAST. 1999. A guidance of fertilization for crops. National Institute of Agricultural Science and Technology, Suwon, Korea
  25. Ozores-Hampton, M., P. A. Stansly, and T. A. Obreza. 2005. Heavy metal accumulation in a sandy soil and in pepper fruit following long-term application of organic amendments. Compost Sci. Util. 13:60-64 https://doi.org/10.1080/1065657X.2005.10702218
  26. Reganold, J. P. 1988. Comparison of soil properties as influenced by organic and conventional farming systems. Am. J. Altern. Agric. 3:144-155 https://doi.org/10.1017/S0889189300002423
  27. Sims, J. T., and G. V. Johnson. 1991. Micronutrient in soil. p. 427- 479. In J. J. Mortvedt (ed.) Micronutrients in agriculture. 2nd ed. SSSA Book series No. 4. SSSA, Madison, WI, USA
  28. Soltanpour, P. N., A. Khan, and W. L. Lindsay. 1976. Factors affecting DTPA-extractable Zn, Fe, Mn, and Cu from soils. Commun. Soil Sci. Plant Anal. 7:797-821 https://doi.org/10.1080/00103627609366689
  29. Thomas, G. W. 1982. Exchangeable cations. p. 159-165. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2: Chemical and microbiological properties. SSSA, Madison, WI, USA
  30. Vogtmann, H. 1984. Organic farming practices and research in Europe. p. 19-36. In D. M. Kral et al. (ed.) Organic farming: Current technology and its role in a sustainable agriculture. ASA Special Publication No. 46. American Society of Agronomy, Madison, WI, USA