DOI QR코드

DOI QR Code

Structural Study of Tetragonal-Ni1-xPdxSi/Si (001) Using Density Functional Theory (DFT)

Density Functional Theory (DFT)를 이용한 Tetragonal-Ni1-xPdxSi/Si (001)의 구조 연구

  • Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Seo, Hwa-Il (School of Information Technology, Korea University of Technology and Education) ;
  • Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
  • 김대희 (한국기술교육대학교 신소재공학과) ;
  • 서화일 (한국기술교육대학교 정보기술공학부) ;
  • 김영철 (한국기술교육대학교 신소재공학과)
  • Published : 2008.09.27

Abstract

Tetragonal-$Ni_{1-x}Pd_x$Si/Si (001) structure was studied by using density functional theory (DFT). An epitaxial interface between $2{\times}2{\times}4$ (001) tetragonal-NiSi supercell and $1{\times}1{\times}2$ (001) Si supercell was first constructed by adjusting the lattice parameters of B2-NiSi structure to match those of the Si structure. We chose Ni atoms as a terminating layer of the B2-NiSi; the equilibrium gap between the tetragonal-NiSi and Si was calculated to be 1.1 ${\AA}$. The Ni atoms in the structure moved away from the original positions along the z-direction in a systematic way during the energy minimization. Two different Ni sites were identified at the interface and the bulk, respectively. The two Ni sites at the interface have 6 and 7 coordination numbers. The Ni sites with coordination number 6 at the interface were located farther away from the interface, and were more favorable for Pd substitution.

Keywords

References

  1. Front End Process, International Technology Roadmap for semiconductors 2005 from http://www.itrs.net/Links/2005ITRS/Home2005.htm
  2. T. Morimoto, IEEE Trans. Electron Devices, 42, 915 (1995) https://doi.org/10.1109/16.381988
  3. M. Kh. Rabadanov and M. B. Ataev, Inorg. Mat., 38, 120 (2002) https://doi.org/10.1023/A:1014056825562
  4. G. Profeta, S. Picozzi, A. Continenza and R. Podloucky, Phys. Rev. B, 70, 235338 (2004) https://doi.org/10.1103/PhysRevB.70.235338
  5. D. -H. Kim, H. -I. Seo and Y. -C. Kim, J. Semi. & Disp. Equi. Tech., 6(4), 65 (2007)
  6. Y. -C. Kim, P. Adusumili, L. J. Lauhon, D. N. Seidman, S. Y. Jung, H. D. Lee, R. L. Alvis, R. M. Ulfig and J. D. Olson, Appl. Phys. Lett., 91, 113106 (2007) https://doi.org/10.1063/1.2784196
  7. G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993); G. Kresse and J. Hafner, Phys. Rev. B, 49, 14251 (1994) https://doi.org/10.1103/PhysRevB.49.14251
  8. G. Kresse and J. Furthüller, Comput. Mat. Sci., 6, 15 (1996) https://doi.org/10.1016/0927-0256(96)00008-0
  9. G. Kresse and J. Furthüller, Phys. Rev. B, 54, 11169 (1996) https://doi.org/10.1103/PhysRevB.54.11169
  10. G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999) https://doi.org/10.1103/PhysRevB.59.1758
  11. D. Vanderbilt, Phys. Rev. B, 41, R7892 (1990) https://doi.org/10.1103/PhysRevB.41.7892
  12. D. M. Wood and A. Zunger, J. Phys. A, 18, 1343 (1985) https://doi.org/10.1088/0305-4470/18/9/018
  13. P. Pulay, Chem. Phys. Lett., 73, 393 (1980) https://doi.org/10.1016/0009-2614(80)80396-4
  14. K. Momma and F. Izumi, J. Appl. Crystallogr., 41, 653 (2008) https://doi.org/10.1107/S0021889808012016
  15. K. Momma and F. Izumi, J. Appl. Crystallogr., 41, 653 (2008) https://doi.org/10.1107/S0021889808012016