Effect of Hot-air Drying Temperature on Volatile Compounds in Chrysanthemum boreale M. Flowers

열풍 건조온도에 따른 산국의 휘발성 성분 변화

  • Bae, Sung-Mun (Department of Food Science and Biotechnology, Kyungnam University, Gyeongnam Agricultural Research and Extension Services) ;
  • Lee, Seung-Cheol (Department of Food Science and Biotechnology, Kyungnam University)
  • 배성문 (경남대학교 식품생명학과, 경남농업기술원 작물연구과) ;
  • 이승철 (경남대학교 식품생명학과)
  • Published : 2008.08.01

Abstract

This study examined the effect of drying temperature on the qualitative properties of Chrysanthemum boreale M. flowers. The flower samples were dried in a hot air dryer at $40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$, respectively, to attain a $23{\pm}1%$ moisture content. The time required to reach the target moisture content was 8.5-69 hr, and there was a very high negative correlation between log (spending time) and temperature. The Hunter color L- and b-values of the flowers were decreased with increasing drying temperature, whereas the a-value was increased. The volatile compounds contained in the dried flowers were determined by a solid-phase microextraction method. Twelve primary volatile compounds were detected and then quantified based on the GC chromatograms of the samples. The total contents of volatile compounds were increased with increasing drying temperature, and germacrene D and camphor were the main compounds in all samples.

방향성 약초인 산국을 열풍건조기를 이용하여 각각 4O, 50, $60^{\circ}C$ 에서 수분함량 $23{\pm}1%$ 에 도달할 때까지 건조하였다. 건조시간은 8.5-69시간이 소요되었으며, 소요된 건조시간의 log값은 건조 온도와 높은 역 상관관계를 나타내었다. 건조온도 상승에 따라 산국의 색도 L 값과 b 값은 감소하였고, a 값은 증가하는 경향을 보였다. 산국의 휘발성분 함량의 총합을 $60^{\circ}C$ 건조조건의 것을 100% 로 하였을 때 $50^{\circ}C$ 건조에서는 98.4%, $40^{\circ}C$ 건조에서는 85.4%로 건조 온도가 낮을수록 낮은 휘발성분이 검출되었다. 모든 건조조건의 산국에서 가장 많이 검출된 휘발성분은 germacrene D이었으며, 가장 높은 함량은 $60^{\circ}C$ 건조에서 33.9%이었고, 같은 조건에서 camphor는 23.1%가 검출되었다.

Keywords

References

  1. Choi YJ. Korean Ethonobotany. Academy Book, Seoul, Korea. p. 53 (1992)
  2. Bensky D, Andrew G. Chinese Herbal Medicine. Eastland Press, Seattle, WA, USA. pp. 120-137 (1993)
  3. Han WS. Isolation and structure elucidation of radical scavengers from Chrysanthemum boreale Makino. Korean J. Med. Crop Sci. 11: 1-4 (2003)
  4. Jang DS, Park KH, Lee JR, Ha TJ, Park YB, Nam SH, Yang MS. Antimicrobial activities of sesquiterpene lactones isolated from Hemisteptia lyrata, Chrysanthmum zawadskii, and Chrysanthemum boreale. J. Korean Soc. Agric. Chem. Biotechnol. 42: 176-179 (1999)
  5. Cha JD, Kim TY, Woo WH, Chung KY, You YO, Kim KJ, Kil BS. Effect of Chrysanthemum boreale essential oil to several microorganisms. Bull. Life Sci. Biotechnol. 7: 1-17 (2000)
  6. Nam SH, Choi SD, Choi JS, Jang DS, Choi SU Yang MS. Effects of sesquiterpene lactones isolated from Chrysanthemum boreale M. against sarcoma180 implanted in ICR mice. J. Korean Soc. Food Sci.Nutr. 26: 144-147 (1997)
  7. Shin KH, Kang SS, Seo EA, Shin SW. Isolation of aldose reductase inhibitions from the flowers of Chrysanthemum boreale. Arch. Pharm.Res. 18: 65-68 (1995) https://doi.org/10.1007/BF02979135
  8. Hong CU. Essential oil composition of Chrysanthemum boreale and Chrysanthemum indicum. J. Korean Soc. Agric. Chem. Biotechnol. 45: 108-113 (2002)
  9. Kangsosin, Dictionary of Chinese Medicine, Shanghai Science, Shanghai, China. pp. 3845-3846 (1998)
  10. Kim KY, Song HJ. Processing of Oriental Medicine. Shin-il Press, Seoul, Korea. pp. 118-119 (2002)
  11. Vas G, Vekey K. Solid-phase microextraction: A powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 39: 233-254 (2004) https://doi.org/10.1002/jms.606
  12. Vivek KB, Atiqur R, Kang SC. Chemical composition and anti-fungal properties of the essential oil and crude extracts of Metasequoia glyptostroboides Miki ex Hu. Ind. Crop. Prod. 26: 28-35 (2007) https://doi.org/10.1016/j.indcrop.2006.12.012
  13. Mourey A, Canillac N. Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control 13: 289-292 (2002) https://doi.org/10.1016/S0956-7135(02)00026-9
  14. Tzakou C, Koutsoumani K, Nychas GJE. Inhibition of Salmonella enteritidis and 10 Staphylococcus aureus in nutrient broth by mint essential oil. Food Res. Int. 33: 273-280 (2000) https://doi.org/10.1016/S0963-9969(00)00047-8
  15. Braca A, Siciliano T, D'Arrigo M, German MP. Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia 79: 123-125 (2007) https://doi.org/10.1016/j.fitote.2007.11.002
  16. Andrews RE, Parks LW, Spence KD. Some effects of douglas fir terpenes on certain microorganisms. Appl. Environ. Microb. 40: 301-304 (1980)
  17. Legault J, Pichette A. Potentiating effect of beta-caryophyllene on anticancer activity of alpha-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol. 59: 1643-1647 (2007) https://doi.org/10.1211/jpp.59.12.0005
  18. Kim JO, Kim YS, Lee JH, Kim MN, Rhee SH, Moon SH, Park KY. Antimutagenic effect of the major volatile compounds identified from mugwort (Artemisia asatica nakai) leaves. J. Korean Soc. Food Nutr. 21: 308-309 (1992)
  19. Enan E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Phys. C 130: 325-337 (2001)
  20. Rivero-Cruz B, Rivero-Cruz I, Rodriguez JM, Cerda-Garcia-Rojas CM, Mata R. Qualitative and quantitative analysis of the active components of the essential oil from Brickellia veronicaefolia by nuclear magnetic resonance spectroscopy. J. Nat. Prod. 69: 1172-1176 (2006) https://doi.org/10.1021/np060180b
  21. R stelien T, Borg-Karlson AK, Fldt J, Jacobsson U, Mustaparta H. The plant sesquiterpene germacrene D specifically activates a major type of antennal receptor neuron of the tabacco budworm moth Heliothis virescens. Chem. Senses 25: 141-148 (2000) https://doi.org/10.1093/chemse/25.2.141
  22. The Merck Index. 14th ed. pp. 279. Merck & Co. Inc., Whitehouse Station, NJ, USA (2006)