Photosynthesis, Chlorophyll Contents and Leaf Characteristics of Ilex rotunda under Different Shading Treatments

비음처리에 따른 먼나무의 광합성, 엽록소 함량 및 엽 특성

  • Han, Jin-Gyu (Ecosystem Engineering, Dep. Life Science, Kyunghee University) ;
  • Son, Seog-Gu (Warm-temperature Forest Research Center, Korea Forest Research Institute) ;
  • Kim, Sea-Hyun (Department of Genetics Forest Resources, Korea Forest Research Institute) ;
  • Kim, Chan-Soo (Warm-temperature Forest Research Center, Korea Forest Research Institute) ;
  • Hwang, Suk-In (Department of Genetics Forest Resources, Korea Forest Research Institute) ;
  • Byun, Kwang-Ok (Warm-temperature Forest Research Center, Korea Forest Research Institute)
  • 한진규 (경희대학교 생태시스템공학) ;
  • 손석규 (국립산림과학원 난대산림연구소) ;
  • 김세현 (국립산림과학원 산림유전자원부) ;
  • 김찬수 (국립산림과학원 난대산림연구소) ;
  • 황석인 (국립산림과학원 산림유전자원부) ;
  • 변광옥 (국립산림과학원 난대산림연구소)
  • Published : 2008.08.30

Abstract

Two-year-old seedlings of Ilex rotunda were grown under control (full sunlight) and three different shading condition. Those conditions were full sunlight (PPFD 1600${\mu}mol\;m^{-2}\;s^{-1}$), 30% (PPFD 400${\mu}mol\;m^{-2}\;s^{-1}$), 50% (PPFD 250${\mu}mol\;m^{-2}\;s^{-1}$) and 70% treatment (PPFD 100${\mu}mol\;m^{-2}\;s^{-1}$). Total chlorophyll contents were inverse proportion to light intensity. Seedlings under full sunlight showed the highest photosynthetic activity such as photosynthetic rate, intercellular $CO_2$ concentration and water use efficiency. Photosynthetic activity trend was increased at the higher light intensity than the lower treatment over PPFD 500${\mu}mol\;m^{-2}\;s^{-1}$. Especially, seedlings under 70% treatment showed the worst photosynthetic activity at high light intensity. That result was regular for adapted plant in low intensity environment. Leaf area was also inverse proportion to light intensity, while dry weight per leaf area was shown the opposite trend.

4가지 다른 광도조건의 비음처리구에서 2년간 생육한 먼나무 묘목의 총 엽록소 함량은 비음처리 강도가 높아질수록 총 엽록소 함량도 큰 값을 나타냈다. 광합성 특성을 알아보기 위해 조사된 광합성 능력, 엽육내 $CO_2$ 농도, 수분이용효율 모두 무처리에서 가장 높은 광합성 효율을 나타냈으며 비음처리별 비교에서도 광도가 낮아질수록 낮은 광합성 효율을 나타냈다. 특히, 가장 낮은 광도조건인 70% 차광처리구는 높은 광도조건에서 가장 낮은 광합성 효율을 나타냈는데 이는 낮은 광도조건에 순화된 광합성 기구가 높은 광도 조건에 적응하지 못한 결과로 사료된다. 잎의 형태적 특성에서는 광도조건이 낮을수록 큰 엽면적을 나타냈으며 단위면적당 건중량은 무처리에서 가장 큰 값을 나타냈다.

Keywords

References

  1. Arnon, D. I. 1949. Copper enzymes in isolated chloroplast, polyphenoloxidase in Betula vulgaris. Plant Physiology 24: 1-15 https://doi.org/10.1104/pp.24.1.1
  2. Ashraf, M., M. Arfan, M. Shahbaz, M. Ahmad and A. Jamil. 2002. Gas exchange characteristics and water relations in some elite skra cultivates under water deficit. Photosynthetica 40(4): 615-620 https://doi.org/10.1023/A:1024368522742
  3. Barnes, J. D., L. Balaguer, E. Manrique, S. Elvira and A. W. Davison. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophyll a and b in lichen and higher plants. Environmental and Experimental Botany 32(2): 88-100
  4. Boardman, N. K. 1977. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physiology 28: 355-377 https://doi.org/10.1146/annurev.pp.28.060177.002035
  5. Evans, J. R. 1994. Developmental constrains on photosynthesis: effects of light and nutrition, In : Baker N. R. ed. Photosynthesis and the environment. Kluwer Acadimic Press, Dordrecht, pp. 281-304
  6. Gibson, K. D., A. J. Fischer and T. C. Foin. 2001. Shading and the growth and photosynthetic responses of Ammannia conninnea. Weed research 41: 59-67 https://doi.org/10.1046/j.1365-3180.2001.00223.x
  7. Gorski, T. 1975. Germination of seeds in the shadow of plants. Physiology Plantrum 34: 342-346
  8. Jo, M. H. 1989. Coloured woody plants of Korea. Academybook 152-300
  9. Logan, B. A., B. Demming-Adams and W. W. Adams. 1998. Antioxidants and xanthophylls cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. upon a sudden increase in growth PPFD in the field. J. of Experiment Botany 49: 1881-1888 https://doi.org/10.1093/jexbot/49.328.1881
  10. Makino, A., T. Sato, H. Nakano and T. Mae. 1997. Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances. Planta 203: 390-398 https://doi.org/10.1007/s004250050205
  11. Marini, R. P. and J. A. Barden. 1982. Light penetration on overcast and clear days, and specific leaf weight in apple trees as affected by summer of dormant pruning. J. of the American Society for Horticulture Science 107: 39-43
  12. Noguchi, K., K. Sonoike and I. Terashima. 1996. Acclimation of respiratory properties of leaves of Spinacia oleracea L., a sun species and of Alocasia macrorrhiza (L.) G. Don., a shade species, to changes in growth irradiance. Plant Cell Physiology 37: 377-384 https://doi.org/10.1093/oxfordjournals.pcp.a028956
  13. Rosenqvist, E., G. Wingsle and E. Ogren. 1991. Photoinhibition of photosynthesis in intact willow leaves in response to moderate changes in light and temperature. Physiologia Plantarum 83: 390-396 https://doi.org/10.1111/j.1399-3054.1991.tb00110.x
  14. Salisbury, F. B. and C. W. Ross. 1992. Plant physiology, 4th ed. Wadsworth Publishing Company. Belmont. USA. pp. 257
  15. 김판기, 이갑연, 허성두, 김선희, 이은주. 2003. 차광처리가 가시오갈피 광합성 활성에 미치는 영향. 한국생태학회지 26(6): 321-326
  16. 김판기, 이은주. 2001. 광합성의 생리생태(2)-환경변화에 대한 광합성의 적응반응. 한국농림기상학회지 3(3): 171-176
  17. 제선미, 손석규, 우수영, 변광옥, 김찬수. 2006. 다른 광도에서 생육한 죽절초의 광합성 기구, 엽록소 함량차이. 한국농림기상학회지 8(2): 54-60
  18. 손석규, 강병서, 김찬수, 이성기, 정영교, 강영제, 변광옥, 황석인, 정진현. 2006. 제주유망수종 신품종 육성. 국립산림과학원보고서. pp. 117