DOI QR코드

DOI QR Code

Prevention of Quality Changes in the Cultured Wild Ginseng During Storage

산삼배양근의 저장 중 품질변화 억제

  • Whang, Jong-Hyun (Division of Food and Biotechnology, Chungju National University) ;
  • Yu, Kwang-Won (Division of Food and Biotechnology, Chungju National University) ;
  • Park, Sung-Sun (Dept. of Food and Nutrition, Sungshin Women's University) ;
  • Koh, Jong-Ho (Dept. of Bio-Food, Korea BioPolytechnic College) ;
  • Oh, Sung-Hoon (Dept. of Food and Biotechnology, Ansan College of Technology) ;
  • Suh, Hyung-Joo (Dept. of Food and Nutrition, Korea University) ;
  • Lee, Sang-Hwa (Dept. of Food and Nutrition, Seowon University)
  • 황종현 (국립충주대학교 식품생명공학부) ;
  • 유광원 (국립충주대학교 식품생명공학부) ;
  • 박성선 (성신여자대학교 식품영양학과) ;
  • 고종호 (한국폴리텍바이오대학 바이오식품분석과) ;
  • 오성훈 (안산공과대학 식품생물공학과) ;
  • 서형주 (고려대학교 식품영양학과) ;
  • 이상화 (서원대학교 식품영양학과)
  • Published : 2008.10.31

Abstract

Physicochemical changes were investigated for the shelf-life extension of cultured wild-ginseng roots during storage with various pre-treatments with blanching, CAMICA-SD and DF-100 and treatments with citric acid and vitamin C. The pH of cultured wild-ginseng roots showed the range of $6.06{\sim}6.42$ at $10^{\circ}C$, but showed higher ranges of $6.08{\sim}6.91$ and $6.08{\sim}8.68$ at 20 and $30^{\circ}C$, respectively. Browning index (a/b) was increased with increasing storage temperature, and the index at 10 and $30^{\circ}C$ were 0.405 and 0.469 after 2 weeks, respectively. Browning index and viable cell number of CAMICA-SD pre-treatment showed little changes compared to pre-teatment with blanching or DF-100. When the cultured wild-ginseng roots were treated with 1.0% citric acid and 0.2% DF-100 after pre-treatments with CAMICA-SD, viable cell number was slightly increased to $4.9{\times}10^2CFU/g$ for 3 weeks storage at $10^{\circ}C$. The mixture of citric acid and DF-100 was also used to prevent the growth of microbiology and to reduce browning reaction, especially enzymatic browning reaction. The mixture might effectively extend shelf life of the cultured wild-ginseng roots.

산삼배양근 수확 후 저장중의 성분 변화를 측정하였으며, 이를 토대로 저장성 향상을 위해 멸균수, CAMICA-SD와 DF-100에 의한 전처리 및 전처리 후 산미료인 구연산, 산화 방지제로서 비타민 C 처리하여 저장연장효과를 측정하였다. $10^{\circ}C$ 저장 중 pH 범위는 $6.06{\sim}6.36$으로써 초기 pH 6.08에 비하여 변화가 적었으나, $20^{\circ}C$$30^{\circ}C$의 경우에는 pH가 $6.91{\sim}8.68$로써 미생물의 오염에 의한 변질과 함께 pH가 크게 증가하였다. 갈색도 a/b 값 또한 저장온도가 높을수록 증가하여, 초기값 0.131에 비하여 2주 후 $10^{\circ}C$$30^{\circ}C$에서는 각각 0.405와 0.469의 갈색도를 보여주므로써 저온저장이 품질유지에 중요한 요소임을 알 수 있다. 멸균수, 살균제 및 미생물 억제제가 첨가된 용액에 침지처리하고, $10^{\circ}C$에서 2주간 저장하면서 저장기간에 따른 미생물의 변화를 분석한 결과 염소계 살균제인 CAMICA-SD처리수를 이용 침지 처리한 경우 비교적 안정한 균수를 유지하여 보존성의 연장가능성을 보여주었다. CAMICA-SD(500 ppm)용액으로 전처리된 산삼배양근에 DF-100, 구연산, 비타민 C를 첨가하여 $10^{\circ}C$에 3주간 저장 시 1.0% CA와 0.2% DF-100을 첨가한 용액에 저장한 경우에는 미생물의 증식이 거의 이루어지지 않고 $4.9{\times}10^2CFU/g$ 수준으로써 위생적으로 안전한 상태를 유지하였으며, 갈색도 a/b값도 대조구의 경우 0.38로 크게 증가한 반면 CA와 DF-100처리구는 0.02로써 초기의 색상을 그대로 유지하여 저장안정성이 우수하였다. 따라서 구연산 첨가에 의해 pH를 일정 범위로 조절하고 미생물 생육제어제로서 DF-100을 적정농도로 사용하면 미생물의 오염을 억제하면서 장기간 산삼배양근을 저장할 수 있을 것으로 판단된다.

Keywords

References

  1. Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. 2001. Review of nonenzymatic browning and antioxidant capacity in processed foods. Trends Food Sci Tech 11: 340-346 https://doi.org/10.1016/S0924-2244(01)00014-0
  2. Toivonen PMA, Brummell DA. 2008. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol Tec 48: 1-14 https://doi.org/10.1016/j.postharvbio.2007.09.004
  3. Gerrard JA. 2006. The Maillard reaction in food: progress made, challenges ahead-conference report from the eighth international symposium on the Maillard reaction. Trends Food Sci Tech 17: 324-330 https://doi.org/10.1016/j.tifs.2005.11.011
  4. Claude J, Ubbink J. 2006. Thermal degradation of carbohydrate polymers in amorphous states: A physical study including colorimetry. Food Chem 96: 402-410 https://doi.org/10.1016/j.foodchem.2005.06.003
  5. Altunkaya A, Gokmen V. 2008. Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh lettuce (Lactuca sativa). Food Chem 107: 1173-1179 https://doi.org/10.1016/j.foodchem.2007.09.046
  6. Shuler P. 1990. Natural antioxidants exploited commercially. In Food Antioxidants. Hudson BJF, ed. Elsevier Applied Science, London. p 99-103
  7. Spanos GA, Wrolstad RE. 1992. Phenolics of apple, pear, and white grape juices and their changes with processing and storage. J Agric Food Chem 40: 1478-1487 https://doi.org/10.1021/jf00021a002
  8. Do JH, Kim KH, Jang JG, Yang JW, Lee KS. 1989. Changes in color intensity and components during browning reaction of white ginseng water extract. Korean J Food Sci Technol 21: 480-485
  9. Lee JW. Lee SK, Do JH, Shim KH. 1998. Characteristics of the water soluble browning reaction of Korean red ginseng as affected by heating treatment. J Ginseng Res 22: 193-199
  10. Reed G. 1975. Enzymes in Food Processing. Academic Press Inc., New York. p 236
  11. Innocenti ED, Pardossi A, Tognoni F, Guidi L. 2007. Physiological basis of sensitivity to enzymatic browning in 'lettuce', 'escarole' and 'rocket salad' when stored as fresh-cut products. Food Chem 104: 209-215 https://doi.org/10.1016/j.foodchem.2006.11.026
  12. Duangmal K, Apenten RKO. 1999. A comparative study of polyphenol oxidases from taro (Colocasia esculenta) and potato (Solanum tuberosum var. Romano). Food Chem 64: 351-359 https://doi.org/10.1016/S0308-8146(98)00127-7
  13. Macrae R, Robinson RK, Sadler MJ. 1993. Food technology and nutrition. In Encyclopedia of Food Science. Academic press Inc., San Diego. p 500
  14. Komthong P, Katoh T, Igura N, Shimoda M. 2006. Changes in the odours of apple juice during enzymatic browning. Food Qual Prefer 17: 497-504 https://doi.org/10.1016/j.foodqual.2005.06.003
  15. Park EY, Luh BS, Branen AL. 1984. Proceeding of the 4th International Ginseng Symposium. Korea Ginseng & Tobacco Research Institute, Daejeon, Korea. p 257
  16. Lee JW, Park CK, Do JH. 2005. Antioxidative activity of the water soluble browning reaction products from Korean red ginseng. J Ginseng Res 29: 44-48 https://doi.org/10.5142/JGR.2005.29.1.044
  17. Do JH, Kim KH, Jang JG, Yang JW, Lee KS. 1989. Changes in color intensity and components during browning reaction of white ginseng water extract. Korean J Food Sci Technol 21: 480-485
  18. Levy M, Silberman DE. 1937. The reactions of amino and imino acids with formaldehyde. J Biochem 118: 723-734
  19. Arias R, Lee TC, Logendra L, Janes H. 2000. Correlation of lycopene measured by HPLC with the L, a, b color reading of a hydroponic tomato and the relationship of maturity with color and lycopene content. J Agric Food Chem 48: 1697-1702 https://doi.org/10.1021/jf990974e
  20. Shi J, Le Maguer M, Kakuda Y, Liptay A, Niekamp F. 1999. Lycopene degradation and isomerization in tomato dehydration. Food Res Int 32: 15-21 https://doi.org/10.1016/S0963-9969(99)00059-9
  21. Yeatman JN. 1969. Tomato products: Read tomato red. Food Technol 23: 618-627
  22. Heling I, Rotstein I, Dinur T, Szwec-Levine Y, Steinberg D. 2001. Bactericidal and cytotoxic effects of sodium hypochlorite and sodium dichloroisocyanurate solutions in vitro. J Endodont 27: 278-280 https://doi.org/10.1097/00004770-200104000-00009
  23. Park HW, Cha HS, Kim SH, Park HR, Lee SA, Kim YH. 2006. Effects of grapefruit seed extract pretreatment and packaging materials on quality of dried persimmons. Korean J Food Preserv 13: 168-173
  24. Eidhin DM, Murphy E, Obeirne D. 2005. Polyphenoloxidase from apple (malus domestica Borkh. Cv Bramley's seedling): purification strategies and characterization. J Food Sci 7: 51-58
  25. Eriksson C. 1981. Maillard reactions in food: chemical, physiological and technological aspects. In Progress in Food and Nutrition Science. Pergamon Press, Oxford. Vol 5, p 501

Cited by

  1. 삼백초의 종근 저장온도, 용토 및 처리물질에 따른 생육특성 vol.24, pp.6, 2008, https://doi.org/10.7783/kjmcs.2016.24.6.458
  2. 건조방법에 따른 홍삼 절편의 품질 변화 vol.24, pp.3, 2017, https://doi.org/10.11002/kjfp.2017.24.3.361