DOI QR코드

DOI QR Code

Property of the Nano-Thick TiO2 Films Using an ALD at Low Temperature

저온 ALD로 제조된 TiO2 나노 박막 물성 연구

  • Yoon, Ki-Jeong (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Oh-Sung (Department of Materials Science and Engineering, University of Seoul)
  • 윤기정 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Published : 2008.10.27

Abstract

We fabricated 10 nm-$TiO_2$ thin films for DSSC (dye sensitized solar cell) electrode application using ALD (atomic layer deposition) method at the low temperatures of $150^{\circ}\;and\;250^{\circ}$. We characterized the crosssectional microstructure, phase, chemical binding energy, and absorption of the $TiO_2$ using TEM, HRXRD, XPS, and UV-VIS-NIR, respectively. TEM analysis showed a 10 nm-thick flat and uniform $TiO_2$ thin film regardless of the deposition temperatures. Through XPS analysis, it was found that the stoichiometric $TiO_2$ phase was formed and confirmed by measuring main characteristic peaks of Ti $2p^1$, Ti $2p^3$, and O 1s indicating the binding energy status. Through UV-VIS-NIR analysis, ALD-$TiO_2$ thin films were found to have a band gap of 3.4 eV resulting in the absorption edges at 360 nm, while the conventional $TiO_2$ films had a band gap of 3.0 eV (rutile)${\sim}$3.2 eV (anatase) with the absorption edges at 380 nm and 410 nm. Our results implied that the newly proposed nano-thick $TiO_2$ film using an ALD process at $150^{\circ}$ had almost the same properties as thsose of film at $250^{\circ}$. Therefore, we confirmed that the ALD-processed $TiO_2$ thin film with nano-thickness formed at low temperatures might be suitable for the electrode process of flexible devices.

Keywords

References

  1. M. Gratzel, Prog. Photovolt. Res. Appl., 8, 171 (2000) https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
  2. B. O'regan and M. Gratzel, Nature 353, 737 (1991) https://doi.org/10.1038/353737a0
  3. A. Hagfelt, B. Didriksson, T. Palmqvist, H. Lindstrom, S. Sodergren, H. Rensmo and S. E. Lindquist, Sol. Energy Mater. Sol. Cells, 31, 481 (1994) https://doi.org/10.1016/0927-0248(94)90190-2
  4. A. Hagfeldt and M. Gratzel, Acc. Chem. Res., 33, 269 (2000) https://doi.org/10.1021/ar980112j
  5. K. J. Hwang, S. J. Yoo, S. H. Roh, S. I. Kim and J. W. Lee, Appl. Chem., 11, 2 (2007)
  6. Y. J. Shin, Polym. Sci. Tech., 17, 4 (2006)
  7. J. W. Lee, K. J. Hwang, S. H. Roh and S. I. Kim, J. Kor. Ind. Eng. Chem., 18, 4 (2007)
  8. M. Nakatani, M. Okunaka, T. Saitoh, H. Itoh, K. Matsukuma, N. Kamita, K. Morita: Proc. 17th Conf. IEEE Photovoltaic Specialist, Florida, pp.1352 (1984)
  9. G. C. Dubey, Solar Cells, 15, 1 (1985) https://doi.org/10.1016/0379-6787(85)90069-9
  10. G. E. Jellison, Jr. and R. F. Wood, Solar Cells, 18, 93 (1986) https://doi.org/10.1016/0379-6787(86)90029-3
  11. A. Shibata, Y. Kazama, K. Seki, W. Y. Kim, S. Yamanaka, M. Konagai, K. Takahashi: Proc. 20th Conf. IEEE Photovoltaic Specialist, Las vegas, pp.317-319 (1988)
  12. J. Y. Choi, D. W. Kim, E. J. Lee, S. H. Lee, J. Kor. Solar Energy Soc., 1, 69 (2006)
  13. S. Hao, J. Wu, L. Fan, Y. Huang, J. Lin and Y. Wei, Solar Energy, 76, 745 (2004) https://doi.org/10.1016/j.solener.2003.12.010
  14. T. Suntola, Thin Solid Films, 216, 84 (1992) https://doi.org/10.1016/0040-6090(92)90874-B
  15. T. Suntola, M. Mohai, J. L. Sullivan and S. O. Saied, Appl. Surf. Sci., 84, 357 (1995) https://doi.org/10.1016/0169-4332(94)00545-1
  16. Y. Du, X. Du and S. M. George, Thin Solid Films, 491, 43 (2005) https://doi.org/10.1016/j.tsf.2005.05.051
  17. V. Sammelselg, A. Rosental, A. Tarre, L. Niinisto, K. Heiskanen, K. Ilmonen, L. S. Johansson and T. Uustare, Appl. Surf. Sci., 134, 78 (1998) https://doi.org/10.1016/S0169-4332(98)00224-4
  18. D. B. Williams, C. B. Carter, Transmission Electron Microscopy BasicsI, 1st ed., P.152-170, Plenum Press, NewYork, U.S.A. (1996)
  19. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Muller, P. Liska, N. Vlachopoulous and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993) https://doi.org/10.1021/ja00067a063
  20. S. W. Jung, K. H. Kim, D. H. Park, B. H. Sohn, J. C. Jung, W. C. Zin, S. H. Hwang, S. K. Dhungel, J. S. Yoo and J. Yi, Mater. Sci. Engin. C, 27, 1452 (2007) https://doi.org/10.1016/j.msec.2006.07.033
  21. M. Ritala, M. Leskela, L. Niinisto and P. Haussalo, Chem. Mater., 5, 1174 (1993) https://doi.org/10.1021/cm00032a023
  22. J. Aarik, A. Aidla, T. Uustare and V. Sammelselg, J. Crys. Growth, 148, 268 (1995) https://doi.org/10.1016/0022-0248(94)00874-4
  23. H. Kumagai, M. Matsumoto, K. Toyoda, M. Obara and M. Suzuki, Thin Solid Films, 263, 47 (1995) https://doi.org/10.1016/0040-6090(95)06555-5
  24. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, 2nd ed., pp. 150-173, Perkin-Elmer Corp., Eden Praitie, MN, U.S.A. (1992)
  25. M. Luo, K. Cheong, W. Weng, C. Song, P. Du, G. Shen, G. Xu and G. Han, Mater. Lett., 62, 1965 (2008) https://doi.org/10.1016/j.matlet.2007.10.052
  26. G. U. Oertzen and A. R. Gerson, J. Phys. Chem. Solids, 68, 324 (2007) https://doi.org/10.1016/j.jpcs.2006.09.023
  27. J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare and V. Sammelselg, Thin Solid Films, 305, 270 (1997) https://doi.org/10.1016/S0040-6090(97)00135-1

Cited by

  1. Film Deposited by ALD at Low Temperature vol.23, pp.2, 2016, https://doi.org/10.6117/kmeps.2016.23.2.043
  2. Study on the Nanoscale Behavior of ALD Pt Nanoparticles at Elevated Temperature vol.33, pp.8, 2016, https://doi.org/10.7736/KSPE.2016.33.8.691