Distribution and Remineralization Ratio of Inorganic Nutrients in the Divergence Zone($7^{\circ}{\sim}10.5^{\circ}N$), Northeastern Pacific

북동태평양 발산대 해역($7^{\circ}{\sim}10.5^{\circ}N$)의 무기영양염 분포와 재무기질화 비율

  • Son, Ju-Won (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Kim, Kyeong-Hong (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Kim, Mi-Jin (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Son, Seung-Kyu (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Chi, Sang-Bum (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Hwang, Keun-Choon (South Sea Research Institute, KORDI) ;
  • Park, Yong-Chul (Department of Ocean Sciences, College of Natural Science, Inha University)
  • 손주원 (한국해양연구원 심해해저자원연구부) ;
  • 김경홍 (한국해양연구원 심해해저자원연구부) ;
  • 김미진 (한국해양연구원 심해해저자원연구부) ;
  • 손승규 (한국해양연구원 심해해저자원연구부) ;
  • 지상범 (한국해양연구원 심해해저자원연구부) ;
  • 황근춘 (한국해양연구원 남해연구소) ;
  • 박용철 (인하대학교 자연과학대학 해양과학과)
  • Published : 2008.08.31

Abstract

The distribution of inorganic nutrients and their remineralization ratio in the divergence zone ($7^{\circ}{\sim}10.5^{\circ}N$) of the northeastern Pacific were investigated from July 2003 to July 2007. A divergence zone along the boundary of the North Equatorial Counter Current (NECC) and North Equatorial Current (NEC) at $10^{\circ}N$ was observed in July 2007 when the La Nina event and divergence-related upwelling was strong. The mean depth of oligotrophic surface mixed layer in the divergence zone was 46, 61, and 30 m in July 2003, August 2005, and July 2007, respectively. Below the surface mixed layer, a nutricline was clearly observed. The depth integrated value of nitrate including nitrite (DIVn) in the upper layer($0{\sim}100$ m depth) ranged from 5.51 to 21.71 $gN/m^2$(mean 12.82 $gN/m^2$) in July 2003, from 5.62 to 8.46 $gN/m^2$ (mean 7.15 $gN/m^2$) in August 2005, and from 8.98 to 27.80 $gN/m^2$(mean 21.12 $gN/m^2$) in July 2007. The maximum DIVn was observed at the divergence zone. The distributions of phosphate(DIVp) and silicate(DIVsi) were similar to that of DIVn and the DIVn/DIVsi ratio was $0.87{\pm}0.11$ in the upper layer. The limiting nutrient for phytoplankton growth in the study area was identified as nitrogen(N/P ratio=14.6). The nitrate (including nitrite) concentrations were lower in the region mainly affected by NEC than in the region affected by NECC. The study area of low silicate concentrations was also considered to be Si-limiting environment. The remineralization ratios of nutrients were $P/N/-O_2=1/14.6{\pm}1.1/100.4{\pm}8.8(23.44{\leq}Sigma-{\theta}{\leq}26.38)$ in the study area. These ratios suggested remineralization process in the surface layer of divergence zone.

2003년 7월, 2005년 8월 그리고 2007년 7월에 북동태평양의 발산대 해역($7^{\circ}{\sim}10.5^{\circ}N$)에서 무기영양염 분포와 재무기질화 비율 연구를 위한 조사를 수행하였다. 북적도 반류와 북적도 해류의 경계에서 형성되는 발산대는 라니냐 현상이 있었던 2007년 7월에 북위 $10^{\circ}N$에 위치하였으며, 용승 현상이 강하게 일어났다. 빈영양 환경의 특성을 갖는 표면 혼합층의 깊이는 2003년에 평균 46 m, 2005년에 평균 61 m 그리고 2007년에 평균 30 m 이었고, 표면 혼합층 이하에서는 용존산소 소모와 더불어 무기영양염 농도가 급격하게 증가하는 영양염약층이 형성됐다. 상층(수심 $0{\sim}100m$)에서 아질산염을 포함한 질산염의 총량은 2003년에 $5.51{\sim}21.71gN/m^2$(평균 $12.82gN/m^2$)의 범위를 나타냈고, 2005년에는 $5.62{\sim}8.46gN/m^2$(평균 $7.15gN/m^2$)의 범위를 그리고 2007년에는 $8.98~27.80 gN/m2$(평균 21.12 gN/m2)의 범위로 발산대가 형성된 지점에서 높은 값을 나타냈다. 인산염 총량과 규산염 총량 또한 아질산염을 포함한 질산염 총량 분포와 유사하였으며, 상층에서 파악된 아질산염을 포함한 질산염 총량에 대한 규산염 총량의 비율은 $0.87{\pm}0.11$ 이었다. 연구 해역에서 식물 플랑크톤 성장을 제한하는 무기영양염은 질소계 영양염으로(N/P ratio=14.6), 북적도 반류 지역에 비해 북적도 해류 지역에서 보다 낮은 농도를 나타냈다. 규산염 또한 낮은 농도로 존재하여 규소 제한 환경을 이루었다. 본 연구를 통해 분석된 재무기질화 비율은 $P/N/-O_2=1/14.6{\pm}1.1/100.4{\pm}8.8(23.44{\leq}Sigma-{\theta}{\leq}26.38)$로 Redfield stoichiometry($P/N/-O_2=1/16/138$) 보다는 낮았지만, 연구 해역 표층에서 재무기질화 과정을 설명하기에 충분하였다.

Keywords

References

  1. 노재훈, 유신재, 이미진, 손승규, 김웅서, 2004. Flow cytometer를 이용한 열대 동태평양의 독립영양 극미소 플랑크톤 연구. Ocean and Polar Res., 26(2): 273-286 https://doi.org/10.4217/OPR.2004.26.2.273
  2. 손승규, 손주원, 김경홍, 강정훈, 지상범, 유찬민, 박정기, 김웅서, 2004. 북동태평양 KOMO 정점에서 수온약층에 따른 무기영양염 분포 특성(1995-2002). Ocean and Polar Research, 26(2): 377-384 https://doi.org/10.4217/OPR.2004.26.2.377
  3. 손주원, 손승규, 김경홍, 김기현, 박용철, 김동화, 김태하, 2005. 북동태평양 KODOS 해역의 유기탄소 및 겉보기산소소비량 특성. Ocean and Polar Res., 27(1): 1-13 https://doi.org/10.4217/OPR.2005.27.1.001
  4. 신홍렬, 황상철, 전동철, 김기현, 곽종흠, 소선섭, 2004. 동태평양 KODOS 탐사해역에서의 물리해양환경 및 저층해류 특성. Ocean and Polar Res., 26(2): 341-349 https://doi.org/10.4217/OPR.2004.26.2.341
  5. 해양수산부, 2006. 심해저 광물자원개발 보고서. 제1권, 한국해양연구원, CRPM-38200-1838-5, 33-34 pp
  6. 해양수산부, 2008. 심해저 광물자원개발 보고서. 제1권, 한국해양연구원, CRPM-44000-1936-5, 161 pp
  7. Abe, K., 2001. Cd in the western equatorial Pacific. Mar. Chem., 74: 197-211 https://doi.org/10.1016/S0304-4203(01)00015-9
  8. Abe, K., 2002. Preformed Cd and PO4 and the relationship between the two elements in the northwestern Pacific and the Okhotsk Sea. Mar. Chem., 79: 27-36 https://doi.org/10.1016/S0304-4203(02)00038-5
  9. Abell, J., S. Emerson and R.G. Keil, 2005. Using preformed nitrate to infer decadal changes in DOM remineralization in the subtropical North Pacific. Global Biogeochem. Cycles, 19, GB1008
  10. Anderson, L.A. and J.L. Sarmiento, 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8: 65-80 https://doi.org/10.1029/93GB03318
  11. Anderson, L.A., 1995. On the hydrogen and oxygen content of marine phytoplankton. Deep-Sea Res. I, 42: 1675-1680 https://doi.org/10.1016/0967-0637(95)00072-E
  12. Arrieta, J.M., M.G. Weinbauer, C. Lute and G.J. Herndl, 2004. Response of bacterioplankton to iron fertilization in the Southern Ocean. Limnol. Oceanogr., 49: 799-808 https://doi.org/10.4319/lo.2004.49.3.0799
  13. Barber, R.T., M.P. Sanderson, S.T. Lindley, F. Chai, J. Newton, C.C. Trees, D.G. Foley and F.P. Chavez, 1996. Primary production and its regulation in the equatorial Pacific during and following the 1991-92 El Nino. Deep-Sea Research II, 43: 970-993
  14. Blanchot, J., J.M. Andre, C. Navarette, J. Neveux and M.H. Radenac, 2001. Picophytoplankton in the equatorial Pacific: vertical distributions in the warm pool and in the high nutrient low chlorophyll conditions. Deep-Sea Res. I, 48(1): 297-314 https://doi.org/10.1016/S0967-0637(00)00063-7
  15. Boulahdid, M. and J.F. Minster, 1989. Oxygen consumption and nutrient regeneration ratios along isopycnal horizons in the Pacific Ocean. Mar. Chem., 26: 133-153 https://doi.org/10.1016/0304-4203(89)90057-1
  16. Broecker, W.S., T. Takahashi and T. Takahashi, 1985. Sources and flow patterns of deep ocean waters as induced from potential temperature, salinity, and initial phosphate concentration. J. Geophys. Res., 90: 6925-6939 https://doi.org/10.1029/JC090iC04p06925
  17. Brzezinski, M.A., 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol., 21: 347-357
  18. Brzezinski, M.A., C.J. Pride, V.M. Franck, D.M. Sigman, J.L. Sarmiento, K. Matsumoto, N. Gruber, G.H. Rau and K.H. Coale, 2002. A switch from $Si(OH)_4$ to $NO_3-$ depletion in the glacial Southern Ocean. Geophys. Res. Lett., 29(12): 1564 https://doi.org/10.1029/2001GL014349
  19. Chai, F., R.C. Dugdale, T.H. Peng, F.P. Wilkerson and R.T. Barber, 2002. One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle. Deep-Sea Res. II, 49: 2713-2745 https://doi.org/10.1016/S0967-0645(02)00055-3
  20. Coale, K.H., S.E. Fitzwater, R.M. Gordon, K.S. Johnson and R.T. Barber, 1996. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature, 379(6566): 621-624 https://doi.org/10.1038/379621a0
  21. Del Giorgio, P.A. and J.J. Cole, 2000. Bacterial energetics and growth efficiency. In: Microbial Ecology of the Ocean. Edited by Kirchman, D.L., Wiley-Less, pp. 289-325
  22. Doval, M.D. and D.A. Hansell, 2000. Organic carbon and apparent oxygen utilization in the western South Pacific and the central Indian Oceans. Mar. Chem., 68: 249-264 https://doi.org/10.1016/S0304-4203(99)00081-X
  23. Dugdale, R.C., F.P. Wilkerson and H.J. Minas, 1995. The role of a silicate pump in driving new production. Deep-Sea Res. I, 42: 697-719 https://doi.org/10.1016/0967-0637(95)00015-X
  24. Dugdale, R.C. and F.P. Wilkerson, 1998. Silicate regulation of new production in the equatorial Pacific upwelling. Nature, 391: 270-273 https://doi.org/10.1038/34630
  25. Francois, R., S. Honjo, R. Krishfield and S. Manganini, 2002. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochem. Cycles, 16(4): 1087 https://doi.org/10.1029/2001GB001722
  26. Galanti, E. and E. Tziperman, 2002. The equatorial thermocline outcropping-A seasonal control on the tropical Pacific Ocean-Atmosphere instability strength. J. Climate, 15(19): 2721-2739 https://doi.org/10.1175/1520-0442(2002)015<2721:TETOAS>2.0.CO;2
  27. Hanawa, K. and I. Hoshino, 1988. Temperature structure and mixed layer in the Kuroshio region over the Izu Ridge. J. Mar. Res., 46: 683-700 https://doi.org/10.1357/002224088785113397
  28. Hyun, J.H. and E.J. Yang, 2005. Meso-scale spatial variation in bacterial abundance and production associated with surface convergence and divergence in the NE equatorial Pacific. Aquatic Micro. Ecol., 41: 1-13 https://doi.org/10.3354/ame041001
  29. Ito, T. and M.J. Follows, 2005. Preformed phosphate, soft tissue pump and atmospheric $CO_2$. J. Mar. Res., 63: 813-839 https://doi.org/10.1357/0022240054663231
  30. Jiang, M.S., F. Chai, R.C. Dugdale, F.P. Wilkerson, T.H. Peng and R.T. Barber, 2003. A nitrate and silicate budget in the equatorial Pacific Ocean: a couple physical-biological model study. Deep-Sea Res. II, 50: 2971-2996 https://doi.org/10.1016/j.dsr2.2003.07.006
  31. Kang, J.H., W.S. Kim and S.K. Son, 2004. Latitudinal differences in the distribution of mesozooplankton in the Northeastern Equatorial Pacific. Ocean and Polar Res., 26: 351-360 https://doi.org/10.4217/OPR.2004.26.2.351
  32. Karl, D.M., R.R. Bidigare and R.M. Letelier, 2001. Long-term changes in plankton coomunity structure and productivity in the North Pacific Subtropical Gyre: The domain shift hypothesis, Deep-Sea Res. II, 48: 1449-1470 https://doi.org/10.1016/S0967-0645(00)00149-1
  33. Kirchman, D.L. and J. Rich, 1997. Regulation of bacterial growth rates by dissolved organic carbon and temperature in the equatorial Pacific Ocean. Microb. Ecol., 33: 11-20 https://doi.org/10.1007/s002489900003
  34. Landry, M.R., R.T. Barber, R.R. Bidigare, F. Chai, K.H. Coale, H.G. Dam, M.R. Lewis, S.T. Lindley, J.J. McCarthy, M.R. Roman, D.K. Stoecker, P.G. Verity and J.R. White, 1997. Iron and grazing constraints on primary production in the central equatorial Pacific-an EqPac synthesis. Limnol. Oceanogr., 42(3): 405-418 https://doi.org/10.4319/lo.1997.42.3.0405
  35. Le Borgne, R., R.T. Barber, T. Delcroix, H.Y. Inoue, D.J. Mackey and M. Rodier, 2002. Pacific warm pool and divergence: temporal and zonal variations on the equator and their effects on the biological pump. Deep-Sea Res. II, 49: 2471-2512 https://doi.org/10.1016/S0967-0645(02)00045-0
  36. Levasseur, M.E. and J.C. Therriault, 1987. Phytoplankton biomass and nutrient dynamics in a tidally induced upwelling: the role of the $NO_3SiOH_4$ ratio. Mar. Ecol. Prog. Ser., 39: 87-97 https://doi.org/10.3354/meps039087
  37. Li, Y.H., D.M. Karl, C.D. Winn, F.T. Mackenzie and K. Gans, 2000. Remineralization ratios in the subtropical North Pacific Gyre. Aquatic Geochem., 6: 65-86 https://doi.org/10.1023/A:1009676300859
  38. Li, Y.H. and T.H. Peng, 2002. Latitudinal change of remineralization ratios in the ocean and its implication for nutrient cycle. Global Biogeochem. Cycles, 16(4): 1130, doi:10.1029/2001GB001828
  39. McCarthy, J.J., C. Garside, J.L. Nevins and R.T. Barber, 1996. New production along 140W in the equatorial Pacific during and following the 1992 El Nino event. Deep-Sea Res. II, 43: 1065-1093 https://doi.org/10.1016/0967-0645(96)00022-7
  40. Mackey, D.J., J. Blanchot, H.W. Higgins and J. Neveux, 2002. Phytoplankton abundances and community structure in the equatorial Pacific. Deep-Sea Res. II, 49: 2561-2582 https://doi.org/10.1016/S0967-0645(02)00048-6
  41. Millero, F.J., 1996. Chemical oceanography. 2nd ed. CRC Press, 220-222 pp
  42. Nelson, D.M., R.F. Anderson, R.T. Barber, M.A. Brzezinsky, K.O. Buesseler, Z. Chase, R.W. Collier, M. Dickson, R. Francois, M.R. Hiscock, S. Honjo, J. Marra, W.R. Martin, R.N. Sambrotto, F.L. Sayles and D.E. Sigmon, 2002. Vertical budgets for organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996-1998. Deep-Sea Res. II, 49: 1645-1674 https://doi.org/10.1016/S0967-0645(02)00005-X
  43. Parsons, T.R., Y. Maita and C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 249 pp
  44. Pavlidou, A. and D. Georgopoulos, 2001. Dissolved oxygen and nutrients in coastal waters impacted by the Strymon river plume, North Aegran Sea, Greece. Global Nest, 3(2): 71-84
  45. Picaut, J., M. Ioualalen, T. Delcroix, F. Masia, R. Murtugudde and J. Vialard, 2001. The oceanic zone of convergence on the eastern edge of the Pacific warm pool: a synthesis of results and implications for El Nino-Southern Oscillation and biogeochemical phenomena. J. Geophy. Research-Oceans, 106(C2): 2363-2386 https://doi.org/10.1029/2000JC900141
  46. Pickard, G.L. and W.J. Emery, 1982. Descriptive physical oceanography. Pergamon Press, 190 pp
  47. Pytkowicz, R.M., 1971. On the apparent oxygen utilization and the preformed phosphate in the ocean. Limnol. and Oceanogr., 16(1): 39-42 https://doi.org/10.4319/lo.1971.16.1.0039
  48. Redfield, A.C., B.H. Ketchum and F.A. Richards, 1963. The influence of organisms on the composition of seawater. In: The sea, Vol. 2, edited by Hill, M.N., Wiley-Interscience, New York, 26-76 pp
  49. Rivkin, R.B. and M.R. Anderson, 1997. Inorganic nutrient limitation of oceanic bacterioplankton. Limnol. Oceanogr., 42: 730-740 https://doi.org/10.4319/lo.1997.42.4.0730
  50. Sala, M.M., F. Peters, J.M. Gasol, C. Pedros-Alio, C. Marrase and D. Vaque, 2002. Seasonal and spatial variation in the nutrient limitation of bacterioplankton growth in the northwestern Mediterranean. Aquat. Microb. Ecol., 24: 47-56
  51. Skoog, A., K. Whitehead, F. Sperling and K. Junge, 2002. Microbial glucose uptake and growth along a horizontal nutrient gradient in the North Pacific. Limnol. Oceanogr., 47: 1676-1683 https://doi.org/10.4319/lo.2002.47.6.1676
  52. Thomas, H., 2002. Reminerlaization ratios of carbon, nutrients, and oxygen in the North Atlantic Ocean: A field databased assessment. Global Biogeochem. Cycles, 16(3): 1051 https://doi.org/10.1029/2001GB001452
  53. Torreton, J.P., V. Talbot and N. Garcia, 2000. Nutrient stimulation of bacterioplankton growth in Tuamotu atoll lagoons. Aquat. Microb. Ecol., 21: 125-137 https://doi.org/10.3354/ame021125
  54. Vidal, M., C.M. Duarte, S. Agusti, J.M. Gasol and D. Vaque, 2003. Alkaline phosphates activities in the central Atlantic Ocean indicates large areas with phosphorus deficiency. Mar. Ecol. Prog. Ser., 262: 43-53 https://doi.org/10.3354/meps262043
  55. Wada, E. and A. Hattori, 1991. Nitrogen in the sea: forms, abundances, and rate processes. CRC Press, 71 pp
  56. Wang, Q, H. Ruijin and A. Zaklikowski, 2002. Variabilities of surface current in the tropical Pacific ocean. J. Ocean Univ. Qingdao, 1(2): 130-134
  57. Wang, X., J.R. Christian, R. Murtugudde and A.J. Busalacchi, 2006. Spatial and temporal variability in new production in the equatorial Pacific during 1980-2003: Physical and biogeochemical controls. Deep-Sea Res. II, 53: 677-697 https://doi.org/10.1016/j.dsr2.2006.01.023
  58. Whitney, F.A., D.W. Crawford and T. Yoshimura, 2005. The uptake and export of silicon and nitrogen in HNLC waters of the NE Pacific Ocean. Deep-Sea Res. II, 52: 1055-1067 https://doi.org/10.1016/j.dsr2.2005.02.006
  59. Yang, E.J., J.K. Choi and J.H. Hyun, 2004. Distribution and structure of heterotrophic protest communities in the northeast equatorial Pacific Ocean. Marine Biology, 146: 1-15 https://doi.org/10.1007/s00227-004-1412-9