Distribution Patterns of Carbon and Nitrogen Contents in the Sediments of the Northeast Equatorial Pacific Ocean

북동 적도태평양해역 퇴적물의 탄소 및 질소함량 분포특성

  • Kim, Kyeong-Hong (Deep-sea & Marine Georesources Research Department, Korea Ocean Research & Development Institute) ;
  • Hyun, Jung-Ho (Department of Environmental Marine Sciences, Hanyang University) ;
  • Son, Ju-Won (Deep-sea & Marine Georesources Research Department, Korea Ocean Research & Development Institute) ;
  • Son, Seung-Jyu (Deep-sea & Marine Georesources Research Department, Korea Ocean Research & Development Institute)
  • 김경홍 (한국해양연구원 심해해저자원연구부) ;
  • 현정호 (한양대학교 해양환경과학과) ;
  • 손주원 (한국해양연구원 심해해저자원연구부) ;
  • 손승규 (한국해양연구원 심해해저자원연구부)
  • Published : 2008.08.31

Abstract

The mesoscale environmental surveys were conducted between $5^{\circ}N\;and\;17^{\circ}N$ mainly along the $131.5^{\circ}W$ meridian from 1997 to 2002 to investigate controlling factors of carbon and nitrogen contents in bottom sediments. Sediments of the study area showed zonal distribution pattern depending on latitudinal position and can be classified into four types; calcareous ooze($5{\sim}6^{\circ}N$), siliceous sediments($8{\sim}12^{\circ}N$), pelagic red clay($16{\sim}17^{\circ}N$), and mixed sediments($7^{\circ}N$). Inorganic carbon(IC) contents varied depending on water depth and carbonate compensation depth(CCD). Carbonate materials were well preserved in the low latitude region, where water depths are shallower than CCD. In contrast, the higher latitude region dominated by siliceous sediment and pelagic red clays has low productivity in water column as well as the water depths deeper than CCD. Thus, most of carbonate materials were dissolved, which resulted in IC contents of less than 0.05% in the sediments. Organic carbon(OC) and total nitrogen contents(TN) in siliceous sediments were higher than in pelagic red clay sediments simply because of higher primary productivity in the siliceous sediment dominated area. The contents of OC and TN were lower in the calcareous ooze than in the siliceous sediments. It is attributed to the high input of calcareous material to the bottom due to relatively shallow water depth of the area, which diluted organic matter contents in the sediment. Overall results indicated that water depth relative to CCD, primary production in water column, and sedimentation rate largely controls the large-scale distribution of carbon and nitrogen contents in the study area.

저층 퇴적물내 탄소와 질소성분의 조절인자를 파악하기 위한 광역적 환경조사가 1997년부터 2002년까지 서경 131.5도를 중심으로 북위 5도에서 17도 사이에서 수행되었다. 위도에 따라 지역적인 분포를 보이는 연구지역의 퇴적물은 네 가지로 분류할 수 있다; 석회질 연니($5{\sim}6^{\circ}N$), 규질 퇴적물($8{\sim}12^{\circ}N$), 원양성 적점토($16{\sim}17^{\circ}N$), 석회질과 규질이 섞여 있는 혼합 퇴적물($7^{\circ}N$). 무기탄소함량은 탄산염보상심도(CCD)와 수심에 의해 변하고 있었다. 수심이 CCD보다 얕은 저위도 지역에서는 석회질 물질이 잘 보존되고 있었다. 반면 규질 퇴적물과 적점토가 우세한 고위도 지역은 수심이 CCD보다 깊을 뿐만이 아니라 낮은 수층 생산성을 가지고 있다. 따라서 대부분의 석회질 물질들은 용해되고 그 결과 퇴적층내 무기탄소함량은 0.05%이하의 낮은 값을 나타내었다. 유기탄소와 총질소함량은 수층의 생산력이 상대적으로 높은 규질 퇴적물지역이 적점토지역보다 함량이 높게 나타났다. 석회질 연니내 유기탄소와 총질소 함량은 규질 퇴적물보다 낮게 나타났다. 이는 상대적으로 낮은 수심에 기인된 저층으로 유입되는 석회질 물질의 높은 유입율이 퇴적층내 유기물 함량을 희석하기 때문인 것으로 추정된다. 전체적인 결과들은 CCD와 연관된 수심, 수층의 생산력, 그리고 퇴적율이 연구지역내 탄소와 질소함량의 광역적 분포를 조절하고 있음을 지시한다.

Keywords

References

  1. 김기현, 박정희, 1999. 북동태평양지역의 방산충 생층서 및 고해양 환경 연구. Ocean Research, 21(2): 127-136
  2. 김경홍, 손승규, 손주원, 주세종, 2006. 해양퇴적물내 총탄소 및 유기탄소의 분석기법 고찰. 한국해양공학회지, 9: 235-242
  3. 박정희, 김기현, 1999. 북동태평양 KODOS-97지역 주상퇴적물의 층서 및 고해양학적 연구. 한국해양학회지, 4: 50-62
  4. 손승규, 현정호, 박정기, 지상범, 김기현, 2001. 북동적도태평양 표층 수온변화에 따른 화학적 환경특성. 한국환경공학회지, 4: 24-37
  5. 신홍렬, 황상철, 전동철, 김기현, 곽종흠, 소선섭, 2004. 동태평양 KODOS 탐사해역에서의 물리해양환경 및 저층해류 특성. Ocean and Polar Research, 26(2): 341-349 https://doi.org/10.4217/OPR.2004.26.2.341
  6. 정회수, 1994. 북동 태평양 KODOS 지역 퇴적물과 공극수 및 망간단괴의 지구화학적 특성. 서울대학교 박사학위 논문, 282 pp
  7. 지상범, 강정극, 오재경, 손승규, 박정기, 2003. 북동태평양 한국 심해저 연구지역 망간단괴의 지역적 분포와 퇴적환경. Ocean and Polar Research, 25(3): 257-267 https://doi.org/10.4217/OPR.2003.25.3.257
  8. 해양수산부(MOMAF), 1998. 심해저 광물지원 탐사보고서(1). 해양수산부 보고서, 1209 pp
  9. 해양수산부(MOMAF), 1999. 심해저 광물지원 탐사보고서(1). 해양수산부 보고서, CRPM99019-00-1201-7, 780 pp
  10. 해양수산부(MOMAF), 2003. 심해저 광물지원 탐사보고서(1). 해양수산부 보고서, CRPM197-00-1582-5, 770 pp
  11. 현정호, 김경홍, 지상범, 문재운, 1998. 북동적도 태평양 KODOS 97-2 해역 심해저 퇴적물내의 ATP 분포양상. 한국해양학회지, 3: 142-148
  12. Balzer, W., 1984. Organic matter degradation and biogenic element cycling in a nearshore sediment (Kiel Bight)1. Limnol. Oceanogr., 29: 1231-1246 https://doi.org/10.4319/lo.1984.29.6.1231
  13. Beers, J.R., 1966. Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. Limnol. Oceanog., 11: 520-528 https://doi.org/10.4319/lo.1966.11.4.0520
  14. Bender, M., T. Sowers, and L. Labeyrie, 1994: The Dole effect and its variations during the last 130,000 years as measured in the VOSTOK ice core. Global Biogeochemical Cycles, 8: 363-376 https://doi.org/10.1029/94GB00724
  15. Berelson, W.M., R.F. Anderson, J. Dymond, D. Demaster, D.E. Hammond, R. Collier, S. Honjo, M. Leinen, J. Mcmanus, R. Pope, C. Smith, and M. Stephens. 1997. Biogenic budgets of particle rain, benthic remineralization and sediment accumulation in the equatorial Pacfic. Deep-Sea Research II 44: 2251-2282 https://doi.org/10.1016/S0967-0645(97)00030-1
  16. Berger, W.H., V.S. Smetacek and G. Wefer. 1989. Ocean productivity and paleoproductivity-An Overview. In: Productivity of the Ocean: Present and Past, edited by Berger, W. H., V. S. Smetacek and G. Wefer, John Wiley & Sons, New York, pp. 1-34
  17. Berner, R.A., 1980. Early diagenesis: A theoretical approach. Princeton University Press, Princeton, 241 pp
  18. Bordowskiy, O.K., 1965. Source of organic matter in marine basins. Marine Geology, 3: 5-31 https://doi.org/10.1016/0025-3227(65)90003-4
  19. Coale, K.H., et al., 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383: 495-501 https://doi.org/10.1038/383495a0
  20. Chester, R., 1990. Marine geochemistry. Unwin Hyman, London, 698 pp
  21. Craig, J.D., 1979. The relationship between bathymetry and ferromanganese deposits in the north equatorial Pacific. Mar. Geol., 29: 165-186 https://doi.org/10.1016/0025-3227(79)90107-5
  22. de Haas, H. T.C.E. van Weering, and H. de Stigter, 2002. Organic carbon in shelf sea: sinks or sources, preocesses and products. Continental Shelf Research 22: 691-717 https://doi.org/10.1016/S0278-4343(01)00093-0
  23. Hammond, D.E., J. McManus, W.M. Berelson, T.E. Kilgore and R.H. Pope, 1996. Early diagenesis of material in equatorial Pacific sediments: stoichiometry and kinetics. Deep-Sea Research II, 43: 4-6
  24. Harada, K., Y. Shibamoto and H. Kokubun, 1995. Chemical and radiochemical studies of sediment samples from the JET site. In: Proceedings of the ISOPE-Ocean Mining Synposium, edited by Yamazaki, T., K. Aso, Y. Okano and K. Tsurusaki, ISOPE, Tsukuba, pp. 187-192
  25. Honjo, S., J. Dymond, R. Collier and S.J. Manganini, 1995. Export production of particles to the interior of the quatorial Pacific Ocean during the 1992 EqPac experiment. Deep-Sea Research II, 42: 831-870 https://doi.org/10.1016/0967-0645(95)00034-N
  26. Horn, D.R., B.M. Horn, and M.N. Delach, 1973. Copper and Nikel content of ocean ferromanganese deposits and their relation to properties of the substrate. In: The Origin and Distribution of Manganese Nodules in the Pacific and Prospects for Exploration, edited by Morgenstein M., Hawaii Inst. Geophysics, Honolulu, pp. 77-83
  27. Hyun, J.H., J.K. Choi, E.J. Yang, and K.H. Kim, 1998. Biomass and Productivity of bacterioplankton related to surface water divergence in the northeast equatorial Pacific Ocean. J. Microbiology, 36: 151-158
  28. Hyun, J.H., and E.J. Yang, 2005. Meso-scale spatial variation in bacterial abundance and production associated with surface convergence and divergence in the NE equatorial Pacific. Aquatic Microbial Ecology, 41: 1-13 https://doi.org/10.3354/ame041001
  29. Jocteur Monorozier, L., M. Benijoly, P. pillon, F. Andreux, and B. Souchier, 1981. Distribution of organic matter in grain-size fractions of some recent sediments. Advences in Organic Geochemistry
  30. Johnson, D.A., and T.C., Johnson, 1970. Sediment redistribution by bottom currents in the central Pacific. Deep-Sea Research, 17: 157-169 https://doi.org/10.1016/0011-7471(70)90094-X
  31. Johnson, D.A., 1972. Ocean-floor erosion in the equatorial Pacific. Geological Society of America Bulletin, 83: 3121-3144 https://doi.org/10.1130/0016-7606(1972)83[3121:OEITEP]2.0.CO;2
  32. Johnson, G.C., B.M. Sloyan, W.S. Kessler, and K.E. McTaggart, 2002. Direct mesurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Progress in Oceanography, 52: 31-61 https://doi.org/10.1016/S0079-6611(02)00021-6
  33. Kessler, W.S., 2006. The circulation of the eastern tropical Pacific : A review. Progress in Oceanography, 69: 181-217 https://doi.org/10.1016/j.pocean.2006.03.009
  34. Keil, R.G., and J.I. Hedges, 1993. Sorption of organic matter to mineral surfaces and the preservation of organic matter in coastal marine sediments. Chemical Geology, 107: 385-388 https://doi.org/10.1016/0009-2541(93)90215-5
  35. Kennett, J.P. 1982, Marine geology. Prentice-Hall Inc., Englewood Cliffs, 813 pp
  36. Kontar, E.A. and A.V. Sokov, 1994. A benthic storm in the northeastern tropical Pacific over the fields of manganese nodules. Deep-sea Research I 41: 1069-1089 https://doi.org/10.1016/0967-0637(94)90019-1
  37. Kim. D.S., J.H. Park, and K.H. Kim, 1997. The determination of sedimentation rates by using cosmogenic $^{10}$Be in a sediment core from the Korea Deep Ocean Study (KODOS) area, northeast equatorial Pacific. Ocean Research, 19(2): 127-132
  38. Libes, S.M., 1992. An introduction to marine biogeochemistry. John Wiley & Sons, Inc., New York, 734 pp
  39. Marchig, V. and H. Gundlach, 1981. Seperation of iron from manganese and prowth of manganese nodules as a consequence of diagenetic ageing of radiolaians. Marine Geology, 40: 35-43 https://doi.org/10.1016/0025-3227(81)90136-5
  40. Martin, J.H., et al., 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371: 123-129 https://doi.org/10.1038/371123a0
  41. Milliman, J.D., 1993: Production and accumulation of calciumcarbonate in the ocean - budget of a nonsteady state. Global Biogeochemical Cycles, 7: 927-957 https://doi.org/10.1029/93GB02524
  42. Muller, P.J., 1977. C/N ratios in Pacific deep-sea sediment: Effect of inorganic amonium and organic nitrogen compounds sorbed by clays. Geochim. Cosmochim. Acta, 41: 765-776 https://doi.org/10.1016/0016-7037(77)90047-3
  43. Muller, P.J., M. Hartmann and E. Suess, 1988. Environment of manganese nodule. In: The manganese nodule belt of the Pacific Ocean, edited by Halbach, P., G. Friedrich and U. von Stackelberg, Ferdinand Enke Verlag, Stuttgart, pp.70-141
  44. Nieuwenhuize, J., Y.E. M. Maas and J.J. Middelburg, 1994. Rapid analysis of organic carbon and nitrogen in particulate materials. Marine Chemistry, 45: 217-224 https://doi.org/10.1016/0304-4203(94)90005-1
  45. Pickard, G.L. and W.J. Emery, 1982. Descriptive physical oceanography, Pergamon Press, New York, 249 pp
  46. Piper, D.Z., H.E. Cook, and J.V. Gardner, 1979. Lithic and acoustic stratigraphy of the equatorial north Pacific: DOMES sites A, B, and C. In: Marine Geology and Oceanography of the Pacific Manganese Nodule Province, Marine Science 9, edited by Bischoff, J.L., and D.Z. Piper, Plenium Press, New York, pp. 309-348
  47. Reimers, C.E., 1982. Organic matter in anoxic sediments off central peru: Relations of porosity, microbial decomposition and deformation properties. Marine Geology, 46: 175-197 https://doi.org/10.1016/0025-3227(82)90079-2
  48. Salomons, W. and U. Frstner, 1984. Metals in the hydrocycle. Springer-Verlag, Berlin, 349 pp
  49. Schlitzer, R., 2000. Applying the adjoint method for biogeochemical modeling: export of particulate organic matter in the world ocean. In: Inverse methods in global biogeochemical cycles, [Kasibhatla, P., M. Heimann, P. Rayner, N. Mahowald, R.G. Prinn, and D.E. Hartley (eds)], Geophysical Monograph Series, 114: 107-124
  50. Schroeder, R.A., 1975. Absence of $\beta$-alanine and $\gamma$-amino-butyric acid in cleaned foraminiferal shell: implications for use as a chemical criterion to indicate removal of non-indigenous amino acid contaminants. Earth Planet. Sci. Lett., 25: 274-278 https://doi.org/10.1016/0012-821X(75)90241-1
  51. Smith, C.R., D.J. Hoover, S.E. Doan, R.H. Pope, D.J. Demaster, F.C. Dobbs and M.A. Altabet. 1996. Phytodetritus at the abyssal seafloor across $10^\circ$ of latitude in the central equatorial Pacific. Deep-Sea Research II, 43: 1309-1338 https://doi.org/10.1016/0967-0645(96)00015-X
  52. Smith, C.R., W. Berelson, D.J. Demaster, F.C. Dobbs, D. Hammond, D.J. Hoover, R.H. Pope, and M. Stephens, 1997. Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux. Deep-Sea Research II, 44: 2295-2317 https://doi.org/10.1016/S0967-0645(97)00022-2
  53. Suess, E., 1980. Particulate of organic carbon flux in the ocean: surface productivity and oxygen utilization. Nature, 288: 260-263 https://doi.org/10.1038/288260a0
  54. Theyer, F., 1977. Micropaleontological dating of DOMES project box cores from test areas A and B, tropical Pacific. In: Deep Ocean Environmental Study : Geology and Geochemistry of DOMES Sites A, B, and C, Equatorial North Pacific, edited by D.Z. Piper, USGS open-file report 77-778, Menlo Park, 267 pp
  55. Thunell, R.C., 1982. Carbonate dissolution and abyssal hydrography in the Atlantic Ocean. Marine Geology, 47: 165-180 https://doi.org/10.1016/0025-3227(82)90067-6
  56. Tietjen, J.H., 1992. Abundance and biomass of metazoan meiobenthos in the deep sea In: Deep-sea food chains and the global carbon cycle, edited by Rowe, G.T., V. Pariente, Kluwer Aca-demic publisher, Dordrecht, pp. 45-62
  57. Tyson, R.V., 2001. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry 32: 333-339 https://doi.org/10.1016/S0146-6380(00)00161-3
  58. van Andel, T.H., G.R. Heath, and R.H. Bennet, 1973. Geological results of Leg 163: the central equatorial Pacific, west of the East Pacific Rise. Init. Rep. Deep-Sea Drill. Proj., 16: 411-472
  59. van Iperen, J. and W. Helder, 1985. A method for the determination of organic carbon in calcareous ma rine sediments. Mar. Geol., 64: 179-187 https://doi.org/10.1016/0025-3227(85)90167-7
  60. Vaccaro, R.F., 1965. Inorganic nitrogen in sea water. In: Chemical Oceanography Vol 4, edited by Riley, J.P., and G. Skirrow. Academic Press, pp. 44-78
  61. Vinogradov, A.D., 1953. The elementary chemical composition of marine organisms. Mem. Sears. Found. Mar. Res. II
  62. Verardo, D.J., P.N. Froelich and A. McIntyre, 1990. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba Na-1500 Analzer. Deep-Sea Research, 37: 157-165 https://doi.org/10.1016/0198-0149(90)90034-S
  63. von Stackelberg, U., V. Marchig, P. Halbach and D. Puteanus, 1988. Principles of nodule field formation. In: The manganese nodule belt of the Pacific Ocean, edited by Halbach, P., G. Friedrich and U. von Stackelberg, Ferdinand Enke Verlag, Stuttgart, pp. 159-166
  64. Wong, C.S., W.K. Johnson, N. Sutherland, J. Nishioka, D.A. Timothy, M. Robert, and S. Takeda, 2006. Iron speciation and dynamics during SERIES, a mesoscale iron enrichment experiment in the NE Pacific. Deep-Sea Research I, 53: 2075-2094 https://doi.org/10.1016/j.dsr2.2006.05.037
  65. Yang, Y.L., H. Elderfield and M. Ivanovich, 1990. Glacial to Holocene changes in caronate and clay sedimentation in the equatorial Pacific ocean estimated from thorium-230 profiles. Paleoceanography, 5: 789-809 https://doi.org/10.1029/PA005i005p00789
  66. Yang, E.J., J.K. Choi, and J.H. Hyun, 2004. Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Marine Biology, 146: 1-15 https://doi.org/10.1007/s00227-004-1412-9