DOI QR코드

DOI QR Code

PERFORMANCE EVALUATION OF U-Mo/Al DISPERSION FUEL BY CONSIDERING A FUEL-MATRIX INTERACTION

  • Ryu, Ho-Jin (Recycled Fuel Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Yeon-Soo (Nuclear Engineering Division, Argonne National Laboratory) ;
  • Park, Jong-Man (Recycled Fuel Development Division, Korea Atomic Energy Research Institute) ;
  • Chae, Hee-Taek (Recycled Fuel Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Chang-Kyu (Recycled Fuel Development Division, Korea Atomic Energy Research Institute)
  • Published : 2008.08.31

Abstract

Because the interaction layers that form between U-Mo particles and the Al matrix degrade the thermal properties of U-Mo/Al dispersion fuel, an investigation was undertaken of the undesirable feedback effect between an interaction layer growth and a centerline temperature increase for dispersion fuel. The radial temperature distribution due to interaction layer growth during irradiation was calculated iteratively in relation to changes in the volume fractions, the thermal conductivities of the constituents, and the oxide thickness with the burnup. The interaction layer growth, which is estimated on the basis of the temperature calculations, showed a reasonable agreement with the post-irradiation examination results of the U-Mo/Al dispersion fuel rods irradiated at the HANARO reactor. The U-Mo particle size was found to be a dominant factor that determined the fuel temperature during irradiation. Dispersion fuel with larger U-Mo particles revealed lower levels of both the interaction layer formation and the fuel temperature increase. The results confirm that the use of large U-Mo particles appears to be an effective way of mitigating the thermal degradation of U-Mo/Al dispersion fuel.

Keywords

References

  1. J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C. L. Trybus and T. C. Wiencek, 'Development of Very-high-density Low-enriched-uranium Fuels,' Nucl. Eng. Des., 178, 119 (1997) https://doi.org/10.1016/S0029-5493(97)00217-3
  2. G.L. Hofman and Y.S.Kim, 'A Classification of Uniquely Different Types of Nuclear Fission Gas Behavior,' Nucl. Eng. Technol., 37, 299 (2005)
  3. C.K.Kim, J.M.Park, and H.J.Ryu, 'Use of a Centrifugal Atomization Process in the Development of Research Reactor Fuel,' Nucl. Eng. Technol., 39, 617 (2007) https://doi.org/10.5516/NET.2007.39.5.617
  4. M.K. Meyer, G.L. Hofman, S.L. Hayes, C.R. Clark, T.C. Wiencek, J. L. Snelgrove, R. V. Strain and K. -H. Kim, 'Lowtemperature Irradiation Behavior of Uranium-molybdenum Alloy Dispersion Fuel,' J. Nucl. Mater., 304, 221 (2002) https://doi.org/10.1016/S0022-3115(02)00850-4
  5. A. Leenaers, S. Van den Berghe, E. Koonen, C. Jarousse, F. Huet, M. Trotabas, M. Boyard, S. Guillot, L. Sannen and M. Verwerft, 'Post-irradiation Examination of Uranium-7 wt% Molybdenum Atomized Dispersion Fuel,' J. Nucl. Mater., 335, 39 (2004) https://doi.org/10.1016/j.jnucmat.2004.07.004
  6. D.B. Lee, K.H. Kim and C.K. Kim, 'Thermal Compatibility Studies of Unirradiated U-Mo Alloys Dispersed in Aluminum,' J. Nucl. Mater., 250, 79 (1997) https://doi.org/10.1016/S0022-3115(97)00252-3
  7. K.H. Kim, D.B. Lee, C.K. Kim, G.L. Hofman and K.W. Paik , 'Thermal Compatibility of Centrifugally Atomized U-Mo Powders with Aluminum in a Dispersion Fuel,' Nucl. Eng. Des., 178, 111 (1997) https://doi.org/10.1016/S0029-5493(97)00216-1
  8. H.J. Ryu, Y.S. Han, J.M. Park, S.D. Park and C.K. Kim, 'Reaction Layer Growth and Reaction Heat of U-Mo/Al Dispersion Fuels Using Centrifugally Atomized Powders,' J. Nucl. Mater., 321, 210 (2003) https://doi.org/10.1016/S0022-3115(03)00251-4
  9. H.J. Ryu, Y.S. Kim, G.L. Hofman, D.D. Keiser, 'Characterization of the Interaction Products in U-Mo/Al Dispersion Fuel from In-pile and Out-of-pile Tests,' Proc. RERTR-2006 Inter. Mtg., Cape Town, South Africa, Oct. 29-Nov.2, 2006
  10. S. Van den Berghe, W. Van Renterghem and A. Leenaers, 'Transmission Electron Microscopy Investigation of Irradiated U-7wt%Mo Dispersion Fuel,' J. Nucl. Mater., 375, 340 (2008) https://doi.org/10.1016/j.jnucmat.2007.12.006
  11. G.L. Hofman and M.K. Meyer, 'Properties of U-Mo Alloy Dispersion Fuel,' IAEA Technical Meeting on the Development of High Density Uranium-Molybdenum Dispersion Fuel, Vienna, Austria, Jun. 23-25, 2003
  12. Z. Hashin and S. Shtrikman, 'A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials,' J. Appl. Phys., 33, 3125 (1962) https://doi.org/10.1063/1.1728579
  13. V. Marelle, F. Huet, P. Lemoine, 'Thermo-Mechanical Modelling of U-Mo Fuels with MAIA,' 8th Inter. Mtg. on RRFM, Munich, Germany, Mar. 21-24, 2004
  14. S.L. Hayes, M.K. Meyer, G.L Hofman and J.L. Snelgrove, 'U-Mo/Al Dispersion Fuel Modeling,' Technical Meeting on the Development of High Density U-Mo Dispersion Fuels, Vienna, Austria, June 23-25, 2003
  15. S. Nazare, G. Ondracek and F. Thümmler, 'Investigations on UAlx-Al Dispersion Fuels for High-flux Reactors,' J. Nucl. Mater., 56, 251, (1975) https://doi.org/10.1016/0022-3115(75)90040-9
  16. M.E. Cunningham and K.L. Peddicord, 'Heat Conduction in Spheres Packed in an Infinite Regular Cubical Array,' Inter. J. Heat Mass Transfer, 24, 1081 (1981) https://doi.org/10.1016/0017-9310(81)90157-5
  17. Y.S. Kim, G.L. Hofman, P.G. Medvedev, G.V. Shevilykov, A.B. Robinson and H.J. Ryu, 'Post Irradiation Analysis and Performance Modeling of Dispersion and Monolithic U-Mo Fuels,' Proc. RERTR-2007 Inter. Mtg., Prague, Czech, Sep. 23-27, 2007
  18. J.C. Griess, H.C. Savage and J.L. English, 'Effect of Heat Flux on the Corrosion of Aluminum by Water. Part IV. Tests Relative to the Advanced Test Reactor and Correlation with Previous Results,' ORNL-3541, Oak Ridge National Laboratory (1964)
  19. Y.S. Kim, G.L. Hofman, A.B. Robinson, J.L. Snelgrove, N.A. Hanan, 'Oxidation of Aluminum Alloy Cladding for Research and Test Reactor Fuel,' J. Nucl. Mater., 378, 220 (2008) https://doi.org/10.1016/j.jnucmat.2008.06.032
  20. C.K. Kim, Y.S. Lee, D.B. Lee, S.J. Oh, K.H. Kim, H.T. Chae, J.M. Park, D.S. Sohn, 'Status of the Back-end Optional Advanced Research Reactor Fuel Development in Korea,' Proc. RERTR-2003 Inter. Mtg., Chicago, USA. Oct. 5-10, 2003
  21. J.M. Park, H.J. Ryu, Y.S. Lee, D.B. Lee, S.J. Oh, B.O. Ryu, Y.H. Jung, D.S. Sohn, and C.K. Kim, 'An Investigation on the Irradiation Behavior of Atomized U-Mo/Al Dispersion Rod Fuels,' Proc. RERTR-2004 Inter. Mtg., Vienna, Austria, Nov. 7-12, 2004
  22. Y.S. Kim, G.L. Hofman, H.J. Ryu and S.L. Hayes, 'Irradiation-enhanced Interdiffusion in the Diffusion Zone of U-Mo Dispersion Fuel in Al,' J. Phase Equil. Diff., 27, 614 (2006) https://doi.org/10.1007/BF02736563
  23. C.K. Kim, K.H. Kim, J.M. Park, H.J. Ryu, Y.S. Lee, D.B. Lee, S.J. Oh, H.T. Chae, C.G. Seo, C.S. Lee, 'Progress of the KOMO-3 Irradiation Test for Various U-Mo Dispersion and Monolithic Fuels to Overcome the Interaction Problem in U-Mo/Al Dispersion Fuel,' Proc. RERTR-2005 Inter. Mtg., Boston, USA, Nov. 6-10, 2005

Cited by

  1. Improved Irradiation Performance of Uranium-Molybdenum/Aluminum Dispersion Fuel by Silicon Addition in Aluminum vol.184, pp.1, 2013, https://doi.org/10.13182/NT13-A19867
  2. Metallurgical considerations for the fabrication of low-enriched uranium dispersion targets with a high density for 99Mo production vol.305, pp.1, 2015, https://doi.org/10.1007/s10967-014-3838-y
  3. Radiation Resistance of the U(Al, Si)3 Alloy: Ion-Induced Disordering vol.11, pp.2, 2018, https://doi.org/10.3390/ma11020228