$\beta$-Glucan Suppresses LPS-stimulated NO Production Through the Down-regulation of iNOS Expression and $NF{\kappa}B$ Transactivation in RAW 264.7 Macrophages

  • Yang, Jeong-Lye (Busan Newport Import Food Inspection Office, Busan Regional Food & Drug Administration) ;
  • Jang, Ji-Hyun (BK21 Center for Smart Food and Drugs, Biohealth Products Research Center, Inje University) ;
  • Radhakrishnan, Vinodhkumar (BK21 Center for Smart Food and Drugs, Biohealth Products Research Center, Inje University) ;
  • Kim, Yang-Ha (Department of Food and Nutrition, Ehwa U0mans University) ;
  • Song, Young-Sun (BK21 Center for Smart Food and Drugs, Biohealth Products Research Center, Inje University)
  • Published : 2008.02.29

Abstract

The antioxidant and anti-inflammatory protective effects of $\beta$-glucan from barley on RAW 264.7 murine macrophage cells induced by lipopolysaccharide (LPS) were examined. The RAW 264.7 murine macrophages were preincubated with various concentrations ($0-200\;{\mu}g/mL$) of $\beta$-glucan and stimulated with LPS to induce oxidative stress and inflammation. The $\beta$-glucan treatments were found to reduce thiobarbituric acid-reactive substance (TBARS) accumulation, and enhance glutathione levels and the activities of antioxidative enzymes, including superoxide dismutase (SOD), catalase, glutathione reductase, and glutathione peroxidase (GSH-px) in the LPS-stimulated macrophages as compared to the LPS-only treated cells. Nitric oxide (NO) production was significantly suppressed in a dose-dependent manner (p<0.05) with an $IC_{50}$ of $104\;{\mu}g/mL$. Further treatment with $\beta$-glucan at $200\;{\mu}g/mL$ suppressed NO production to 2% of the LPS-control, and suppressed the levels of inducible nitric oxide synthase (iNOS) protein and mRNA in a dose-dependent manner. The specific DNA binding activity of nuclear factor ${\kappa}B\;(NF{\kappa}B)$ was significantly suppressed by $\beta$-glucan treatment with an $IC_{50}$ of $220\;{\mu}g/mL$ in a dose-dependent manner. Finally, barley $\beta$-glucan ameliorates NO production and iNOS expression through the down-regulation of $NF{\kappa}B$ activity, which may be mediated by attenuated oxidative stress in RAW 264.7 macrophages.

Keywords

References

  1. Bittencourt VC, Figueiredo RT, da Silva RB, Mourao-Sa DS, Fernandez PL, Sassaki GL, Mulloy B, Bozza MT, Barreto-Bergter E. An ${\alpha}$-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and Toll-like receptor activation. J. Biol. Chem. 281: 22614-22623 (2006) https://doi.org/10.1074/jbc.M511417200
  2. Hetland G, Sandven P. ${\beta}$-1,3-Glucan reduces growth of Mycobacterium tuberculosis in macrophage cultures. FEMS Immunol. Med. Mic. 33: 41-45 (2002)
  3. Guzel S, Sunamak O, As A, Celik V, Ferahman M, Nuri MM, Gazioglu E, Atukeren P, Mutlu O. Effects of hyperbaric oxygen and Pgg-glucan on ischemic colon anastomosis. World J. Gastroentero. 12: 1421-1425 (2006) https://doi.org/10.3748/wjg.v12.i9.1421
  4. Nakagawa Y, Ohno N, Murai T. Suppression by Candida albicans ${\beta}$-glucan of cytokine release from activated human monocytes and from T cells in the presence of monocytes. J. Infect. Dis. 187: 710- 713 (2003) https://doi.org/10.1086/368334
  5. Sener G, Toklu H, Ercan F, Erkanli G. Protective effect of betaglucan against oxidative organ injury in a rat model of sepsis. Int. Immunopharmacol. 5: 1387-1396 (2005) https://doi.org/10.1016/j.intimp.2005.03.007
  6. Ha CH, Lim KH, Jang SH, Yun CW, Paik HD, Kim SW, Kang CW, Chang HI. Immune-enhancing alkali-soluble glucans produced by wild-type and mutant Saccharomyces cerevisiae. J. Microbiol. Biotechn. 16: 576-583 (2006)
  7. Zekovic DB, Kwiatkowski S, Vrvic MM, Jakovljevic D, Moran CA. Natural and modified (1${\rightarrow}$3)-beta-D-glucans in health promotion and disease alleviation. Crit. Rev. Biotechnol. 25: 205- 230 (2005) https://doi.org/10.1080/07388550500376166
  8. Ljungman AG, Leanderson P, Tagesson C. (1${\rightarrow}$3)-Beta-D-glucan stimulates nitric oxide generation and cytokine mRNA expression in macrophages. Environ. Toxicol. Pharm. 5: 273-281 (1998) https://doi.org/10.1016/S1382-6689(98)00011-8
  9. Krizkova L, Durackova Z, Sandula J, Slamenova D, Sasinkova V, Sivonova M, Krajcovic J. Fungal ${\beta}$-(1-3)-D-glucan derivatives exhibit high antioxidative and antimutagenic activity in vitro. Anticancer Res. 23: 2751-2756 (2003)
  10. Babincova M, Bacova Z, Machova E, Kogan G. Antioxidant properties of carboxymethyl glucan: Comparative analysis. J. Med. Food 5: 79-83 (2002) https://doi.org/10.1089/109662002760178159
  11. Shen SC, Lee WR, Lin HY, Huang HC, Ko CH, Yang LL, Chen YC. In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E (2) production. Eur. J. Pharmacol. 446: 187-194 (2002) https://doi.org/10.1016/S0014-2999(02)01792-2
  12. Stolz D. Peroxisomal localization of inducible nitric oxide synthase in hepatocytes. Hepatology 36: 81-93 (2002) https://doi.org/10.1053/jhep.2002.33716
  13. Park JY, Park CM, Kin JJ, Noh KH, Cho CW, Song YS. The protective effect of chlorophyll a against oxidative stress and inflammatory processes in LPS-stimulated macrophages. Food Sci. Biotechnol. 16: 205-211 (2007)
  14. Cho HY, Park JY, Kim JK, Noh KH, Moon GS, Kin JI, Song YS. Quercetin ameliorates NO production via down-regulation of iNOS expression, NF${\kappa}$B activation, and oxidative stress in LPS-stimulated macrophage. Food Sci. Biotechnol. 14: 200-206 (2005)
  15. Iqbal M, Cohen RI, Marzouk K, Liu SF. Time course of nitric oxide, peroxynitrite, and antioxidants in the endotoxemic heart. Crit. Care Med. 30: 1291-1296 (2002) https://doi.org/10.1097/00003246-200206000-00021
  16. Berendji D, Kolb-Bachofen V, Meyer KL, Kroncke KD. Influence of nitric oxide on the intracellular reduced glutathione pool: Different cellular capacities and strategies to encounter nitric oxidemediated stress. Free Radical Bio. Med. 27: 773-780 (1999) https://doi.org/10.1016/S0891-5849(99)00123-9
  17. Li N, Karin M. Is NF-kappa B the sensor of oxidative stress? FASEB J. 13: 1137-1143 (1999) https://doi.org/10.1096/fasebj.13.10.1137
  18. Manna SK, Zhang HJ, Yan T, Oberley LW, Aggarwal BB. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1. J. Biol. Chem. 273: 13245-13254 (1998) https://doi.org/10.1074/jbc.273.21.13245
  19. Bonizzi G, Piette J, Schoonbroodt S, Greimers R, Havard L, Merville MP, Bours V. Reactive oxygen intermediate-dependent NF-kappaB activation by interleukin-1${\beta}$ requires 5-lipoxygenase or NADPH oxidase activity. Mol. Cell Biol. 19: 1950-1960 (1999) https://doi.org/10.1128/MCB.19.3.1950
  20. Choi SY, Hwang JH, Ko HC, Park SY, Kim GO, Kim SY, Chang IS, Kwon HM, Kim SJ. Inhibitory action of Tsunokaori Tangor peel on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophage cells. Food Sci. Biotechnol. 15: 270-276 (2006)
  21. Nunokawa Y, Oikawa S, Tanaka S. Human inducible nitric oxide synthase gene is transcriptionally regulated by nuclear factorkappaB dependent mechanism. Biochem. Bioph. Res. Co. 223: 347- 352 (1996) https://doi.org/10.1006/bbrc.1996.0897
  22. Lee AK, Sung SH, Kim YC, Kim SG. Inhibition of lipopolysaccharide- inducible nitric oxide synthase, TNF- and COX-2 expression by suchinone effects on I-B phosphorylation, C/EBP and AP-1 activation. Brit. J. Pharmacol. 139: 11-20 (2003) https://doi.org/10.1038/sj.bjp.0705231
  23. Lo AH, Liang YC, Lin-Shiau SY, Ho CT, Lin JK. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-${\kappa}$B in mouse macrophages. Carcinogenesis 23: 983-991 (2002) https://doi.org/10.1093/carcin/23.6.983
  24. Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem. Pharmacol. 58: 759-765 (1999) https://doi.org/10.1016/S0006-2952(99)00160-4
  25. Fautz R, Husein B, Hechenberger C. Application of the neutral red assay (NR assay) to monolayer cultures of primary hepatocytes: Rapid colorimetric viability determination for the unscheduled DNA synthesis test (UDS). Mutat. Res. 253: 173-179 (1991) https://doi.org/10.1016/0165-1161(91)90130-Z
  26. D'Agostino P, Ferlazzo V, Milano S, La Rosa M, Di Bella G, Caruso R, Barbera C, Grimaudo S, Tolomeo M, Feo S, Cillari E. Anti-inflammatory effects of chemically modified tetracyclines by the inhibition of nitric oxide and interleukin-12 synthesis in J774 cell line. Int. Immunopharmacol. 1: 1765-1776 (2001) https://doi.org/10.1016/S1567-5769(01)00100-X
  27. Fraga CG, Leibovita RM, Roeder RG. Lipid peroxidation measured as thiobarbituric-reactive substances in tissue slices: Characterization and comparision with homogenates and microsomes. Free Radical Bio. Med. 4: 155-161 (1988) https://doi.org/10.1016/0891-5849(88)90023-8
  28. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidaized glutathione: Applications to mammalian blood and other tissue. Anal. Biochem. 27: 502-522 (1969) https://doi.org/10.1016/0003-2697(69)90064-5
  29. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of proteindye binding. Ann. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  30. Marklund S, Marklund G. Involvement of the superoxide anion radical in antioxidant of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469-474 (1974) https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  31. Aebi H. Catalase in vitro. Method Enzymol. 105: 121-126 (1984) https://doi.org/10.1016/S0076-6879(84)05016-3
  32. Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Bioph. Res. Co. 71: 952-958 (1976) https://doi.org/10.1016/0006-291X(76)90747-6
  33. Inger C, Bengt M. Methods in Enzymology. Academic Press Inc., Orlando, FL, USA. pp. 484-490 (1985)
  34. Katsuyama K, Shichiri M, Marumo F, Hirata Y. NO inhibits cytokine-induced iNOS expression and NF-${\kappa}$B activation by interfering with phosphorylation and degradation of I${\kappa}$B-${\alpha}$. Arterioscl. Throm. Vas. Biol. 18: 1795-1802 (1998)
  35. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159 (1987)
  36. Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract isolated from mammalian nuclei. Nucleic Acids Res. 11: 1475-1489 (1983) https://doi.org/10.1093/nar/11.5.1475
  37. Duncan DB. Multiple range tests for correlated and heteroscedastic means. Biometrics 13:164-176 (1957) https://doi.org/10.2307/2527799
  38. Ippouchi K, Itou H, Azuma K, Higashio H. Effect of naturally occurring organosulfur compounds on nitric oxide production in lipopolysaccharide-activated macrophages. Life Sci. 71: 411-419 (2002) https://doi.org/10.1016/S0024-3205(02)01685-5
  39. Wang J, Mazza G. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFNgamma- activated RAW264.7 macrophages. J. Agr. Food Chem. 50: 850-857 (2002) https://doi.org/10.1021/jf010976a
  40. Han MK, Lee JW, Jeong H, Kim YS, Ra SJ, Yoon KH. Nitric oxide, TNF-${\alpha}$, and TGF-${\beta}$ formation of rat kupffer cell activated by the ${\beta}$-glucan from Ganoderma lucidum. Korean J. Appl. Microbiol. Biotechnol. 57: 28-34 (1999)
  41. Lee JW, Baek SJ, Bang KW, Kang SW, Kang SM, Kim BY, Ha IS. Biological activities of polysaccharide extracted from the fruit body and cultured mycelia Phellinus linteus IY001. Korean J. Food Sci. Technol. 32: 726-736 (2000)
  42. Park JH, Kang MS, Kim HI, Chung BH, Lee KH, Moon WK. Study on immuno-stimulating of ${\beta}$-glucan isolated from the cell wall of yeast mutant Saccharomyces cerevisiae IS2. Korean J. Food Sci. Technol. 35: 488-492 (2003)
  43. Kim HN, Lee JN, Kim GE, Lee YMA, Kim CW, Sohn JW. Comparative study of immune-enhancing activity of crude and mannoprotein-free yeast-glucan preparations. J. Microbiol. Biotechn. 9: 826-831 (1999)
  44. Park HJ, Kim YB, Kang TS, Jung IS, Kim KY, Jeong HS. Immunomodulatory activities of oat bran extracts with different extraction conditions. Korean J. Food Sci. Technol. 37: 103-107 (2005)
  45. Gitto E, Karbownik M, Reiter RJ, Tan D, Cuzzocrea S, Chiurazzi P, Cordaro S, Corona G, Trimarchi G, Barberi I. Effects of melatonin treatment in septic newborns. Pediatr. Res. 50: 756-760 (2001) https://doi.org/10.1203/00006450-200112000-00021
  46. Garcia JJ, Reiter RJ, Guerrero JM, Escames G, Yu BP, Oh CS, Munoz-Hoyos A. Melatonin prevents changes in microsomal membrane fluidity during induced lipid peroxidation. FEBS Lett. 408: 297-300 (1997) https://doi.org/10.1016/S0014-5793(97)00447-X
  47. Ross D. Glutathione, free radicals, and chemotherapeutic agents. Mechanisms of free-radical induced toxicity and glutathionedependent protection. Pharmacol. Therapeut. 37: 231-249 (1988) https://doi.org/10.1016/0163-7258(88)90027-7
  48. Szabo S, Nagy L, Plebani M. Glutathione, protein sulfhydryls, and cysteine proteases in gastric mucosal injury and protection. Clin. Chim. Acta 206: 95-105 (1992) https://doi.org/10.1016/0009-8981(92)90010-N
  49. Ide N, Lau BHS. Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-kappa B nuclear factor- activation. J. Nutr. 131: 1020S-1026S (2001)
  50. Yen GC, Lai HH. Inhibitory effects of isoflavones on nitric oxide-or peroxynitrite-mediated DNA damage in RAW 264.7 cells and phiX174 DNA. Food Chem. Toxicol. 40: 1433-1440 (2002) https://doi.org/10.1016/S0278-6915(02)00076-5
  51. Moellering D, Mc Andrew J, Patel RP, Forman HJ, Mulcahy RT, Jo H, Darley-Usmar VM. The induction of GSH synthesis by nanomolar concentrations of NO in endothelial cells: A role for gamma-glutamylcysteine synthetase and gamma-glutamyl transpeptidase. FEBS Lett. 448: 292-296 (1999) https://doi.org/10.1016/S0014-5793(99)00371-3
  52. Ben-Shaul V, Lomnitski L, Nyska A, Zurovsky Y, Bergman M, Grossman S. The effect of natural antioxidants, NAO, and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol Lett. 123: 1-10 (2001)
  53. Watson AM, Warren G, Howard G, Shedlofsky SI, Blouin RA. Activities of conjugating and antioxidant enzymes following endotoxin exposure. J. Biochem. Mol. Toxic. 13: 63-69 (1993)
  54. Sener G, Sert G, Ozer Sehirli A, Arbak S, Uslu B, Gedik N, Ayanoglu-Dulger G. Pressure ulcer-induced oxidative organ injury is ameliorated by beta-glucan treatment in rats. Int. Immunopharmacol. 6: 724-732 (2006) https://doi.org/10.1016/j.intimp.2005.10.010
  55. Sener G, Eksioglu-Demiralp E, Cetiner M, Ercan F, Yegen BC. Beta-glucan ameliorates methotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effects. Eur. J. Pharmacol. 542: 170-178 (2006) https://doi.org/10.1016/j.ejphar.2006.02.056
  56. Willment JA, Marshall AS, Reid DM, Williams DL, Wong SY, Gordon S, Brown GD. The human beta-glucan receptor is widely expressed and functionally equivalent to murine dectin-1 on primary cells. Eur. J. Immunol. 35: 1539-1547 (2005) https://doi.org/10.1002/eji.200425725