Antioxidant Activity of Glycyrrhiza uralensis Fisch Extracts on Hydrogen Peroxide-induced DNA Damage in Human Leucocytes and Cell Death in PC12 Cells

  • Lee, Hyun-Jin (Department of Food and Nutrition, Kyungnam University) ;
  • Yoon, Mi-Young (Department of Chemistly, Kyungnam University) ;
  • Kim, Ju-Young (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Kim, Yong-Seong (Department of Chemistly, Kyungnam University) ;
  • Park, Hae-Ryong (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Park, Eun-Ju (Department of Food and Nutrition, Kyungnam University)
  • Published : 2008.04.30

Abstract

In this study, antioxidant activity of methanol extract of Glycyrrhiza uralensis Fisch (GUE) against $H_2O_2$-induced DNA damage in human leucocytcs and cell death in PC12 cells was determined. The effect of GUE on $H_2O_2$-induced DNA damage in human leucocytcs was evaluated by the comet assay, where GUE ($1-50\;{\mu}g/mL$) was a dose dependent inhibitor of DNA damage induced by $H_2O_2$. The protective effect of GUE against $H_2O_2$-induced damage on PC12 cells was investigated by MTT reduction assay and lactate dehydrogenase release assay. A marked reduction in cell survival induced by $H_2O_2$ was significantly prevented by $1-50\;{\mu}g/mL$ of GUE. The enzyme activity of caspase-3 was elevated in $H_2O_2$-treated PC12 cells, while preincubation with GUE for 30 min inhibited $H_2O_2$-induced caspase-3 activation in a dose-dependent manner. In conclusion, GUE ameliorates $H_2O_2$-induced DNA damage in human leucocytes and has neuroprotective effect by preventing cell death in PC12 cell, suggesting that GU may be a potential candidate for novel therapeutic agents for neuronal diseases associated with oxidative stress.

Keywords

References

  1. Tang SY, Whiteman M, Peng ZF, Jenner A, Yong EL, Halliwell B. Characterization of antioxidant and antiglycation properties and isolation of active ingredients from traditional chinese medicines. Free Radical Bio. Med. 36: 1575-1615 (2004) https://doi.org/10.1016/j.freeradbiomed.2004.03.017
  2. Kim HY, Lee YJ, Hong KH, Kwon YK, Sim KC, Lee JY, Cho HY, Kim IS, Han SB, Lee CW, Shin IS, Cho JS. Isolation of antimicrobial substances from natural products and their preservative effect. Food Sci. Biotechnol. 10: 59-71 (2001)
  3. Wei F. Food and medicines approved in China. pp. 111-112. In: Chinese Functional Food. Lingjuan R (ed). New World Press, Beijing, China (1999)
  4. Wang ZY, Nixon DW. Licorice and cancer. Nutr. Cancer 39: 1-11 (2001) https://doi.org/10.1207/S15327914nc391_1
  5. Fenwick GR, Lutomski J, Nieman C. Liquorice, Glycyrrhiza glabra L.: Composition, uses, and analysis. Food Chem. 38: 119-143 (1990) https://doi.org/10.1016/0308-8146(90)90159-2
  6. Kuwajima H, Taneda Y, Chen WZ, Kawanishi T, Hori K. Variation of chemical constituents in processed licorice roots: Quantitative determination of saponin and flavonoid constituents in bark removed and roasted licorice roots. Yakuga. Zasshi 119: 945-955 (1999) https://doi.org/10.1248/yakushi1947.119.12_945
  7. Jo EH, Hong HD, Ahn NC, Jung JW, Yang SR, Park JS, Kim SH, Lee YS, Kang KS. Modulations of the Bcl-2/Bax family were involved in the chemopreventive effects of licorice root (Glycyrrhiza uralensis Fisch) in MCF-7 human breast cancer cell. J. Agr. Food Chem. 52: 1715-1719 (2004) https://doi.org/10.1021/jf035012t
  8. Demizu S, Kajiyama K, Takahashi K, Hiraga Y, Yamamoto S, Tamura Y. Antioxidant and antimicrobial constituents of licorice: Isolation and structure elucidation of a new benzofuran derivative. Chem. Pharm. Bull. 36: 3474-3479 (1998)
  9. Friis-Moller A, Chen M, Fuursted K, Christensen SB, Kharazmi A. In vitro antimycobacterial and antilegionella activity of licochalcone A from Chinese licorice roots. Planta Med. 68: 416-419 (2002) https://doi.org/10.1055/s-2002-32087
  10. Lee KH, Hwang JH, Yu KW. Preparation of kimchi supplemented with immunomodulatory components isolated from licorice. Food Sci. Biotechnol. 12: 351-357 (2003)
  11. Belinky PA, Aviram M, Fuhrman B, Rosenblat M, Vaya J. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Atherosclerosis 137: 49-61 (1998) https://doi.org/10.1016/S0021-9150(97)00251-7
  12. Vaya J, Belinky PA, Aviram M. Antioxidant constituents from licorice roots: Isolation, structure elucidation, and antioxidative capacity toward LDL oxidation. Free Radical Bio. Med. 23: 302-313 (1997) https://doi.org/10.1016/S0891-5849(97)00089-0
  13. Ames B, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. P. Natl. Acad. Sci. USA 90: 7915-7922 (1993) https://doi.org/10.1073/pnas.90.17.7915
  14. Griendling KK, Harrison DG. Dual role of reactive oxygen species in vascular growth. Circ. Res. 85: 562-563 (1999) https://doi.org/10.1161/01.RES.85.6.562
  15. Floyd RA. Antioxidants, oxidative stress, and degenerative neurological disorders. Exp. Biol. Med. 222: 236-245 (1999) https://doi.org/10.1046/j.1525-1373.1999.d01-140.x
  16. Barbouti A, Doulias PT, Nousis L, Tenopoulou M, Galaris D. DNA damage and apoptosis in hydrogen peroxide-exposed Jurkat cells: Bolus addition versus continuous generation of $H_2O_2$. Free Radical Bio. Med. 33: 691-702 (2002) https://doi.org/10.1016/S0891-5849(02)00967-X
  17. Sundaresan M, Zu-Xi Y, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270: 296-299 (1995) https://doi.org/10.1126/science.270.5234.296
  18. Forman HJ, Torres M. Redox signaling in macrophages. Mol. Aspects Med. 22: 189-216 (2001) https://doi.org/10.1016/S0098-2997(01)00010-3
  19. Burdon R. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radical Bio. Med. 18: 775-794 (1995) https://doi.org/10.1016/0891-5849(94)00198-S
  20. Brown MR, Miller FJ Jr, Li WG, Ellingson AN, Mozena JD, Chatterjee P, Engelhardt JF, Zwacha RM, Oberley LW, Fang X, Spector AA, Weintraub NL. Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells. Circ. Res. 85: 524-533 (1999) https://doi.org/10.1161/01.RES.85.6.524
  21. Antunes F, Cadenas E. Cellular titration of apoptosis with steady state concentrations of $H_2O_2$: Submicromolar levels of $H_2O_2$induce apoptosis through Fenton chemistry independent of the cellular thiol state. Free Radical Bio. Med. 30: 1008-1018 (2001) https://doi.org/10.1016/S0891-5849(01)00493-2
  22. Yang Y, Cheng JZ, Singhal SS, Sanai M, Pandya U, Awasthi S, Awasthi YC. Role of glutathione S-transferases in protection against lipid peroxidation. Overexpression of hGSTA2- 2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J. Biol. Chem. 276: 19220-19230 (2001) https://doi.org/10.1074/jbc.M100551200
  23. Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radical Bio. Med. 29: 323-333 (2000) https://doi.org/10.1016/S0891-5849(00)00302-6
  24. Subir KD, Hiran KR, Sukhes M, Vasudevan DM. Oxidative stress is the primary event: Effects of ethanol consumption in brain. Indian J. Clin. Biochem. 22: 99-104 (2007) https://doi.org/10.1007/BF02912890
  25. Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr. Neurosci. 5: 291-309 (2002) https://doi.org/10.1080/1028415021000033767
  26. Krishnaswamy K, Sushil KJ. Oxidative stress and apoptosis. Pathophysiology 7: 153-163 (2000) https://doi.org/10.1016/S0928-4680(00)00053-5
  27. Gouaze V, Yu JY, Bleicher RJ, Han TY, Liu YY, Wang H, Gottesman MM, Bitterman A, Giuliano AE, Cabot MC. Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol. Cancer Ther. 3: 633-639 (2004)
  28. Singh PN, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell. Res. 175: 184-191 (1988) https://doi.org/10.1016/0014-4827(88)90265-0
  29. Choi HJ, Yee SB, Park SE, Im E, Jung JH, Chung HY, Choi YH, Kim ND. Petrotetrayndiol A induces cell cycle arrest and apoptosis in SK-MEL-2 human melanoma cells through cytochrome cmediated activation of caspases. Cancer Lett. 232: 214-225 (2006) https://doi.org/10.1016/j.canlet.2005.02.030
  30. Kassie F, Parzefall W, Knasmuller S. Single cell gel electrophoresis assay: A new technique for human biomonitoring studies. Mutat. Res. 463: 13-31 (2000) https://doi.org/10.1016/S1383-5742(00)00041-7
  31. Donnelly ET, McClure N, Lewis SE. The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis 14: 505-512 (1999) https://doi.org/10.1093/mutage/14.5.505
  32. Diplock AT. Antioxidant nutrients and disease prevention: An overview. Am. J. Clin. Nutr. 53: 189S-193S (1991)
  33. Murcia MA, Egea I, Romojaro F, Parras P, Jimenez AM, Martinez- Tome M. Antioxidant evaluation in dessert spices compared with common food additives. Influence of irradiation procedure. J. Agr. Food Chem. 52: 1872-1881 (2004) https://doi.org/10.1021/jf0303114
  34. Belinky PA, Aviram M, Fuhrman B, Rosenblat M, Vaya J. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Atherosclerosis 137: 49-61 (1998) https://doi.org/10.1016/S0021-9150(97)00251-7
  35. Belinky PA, Aviram M, Mahmood S, Vaya J. Structural aspects of the inhibitory effect of glabridin on LDL oxidation. Free Radical Bio. Med. 24: 1419-1429 (1998) https://doi.org/10.1016/S0891-5849(98)00006-9
  36. Haraguchi H, Ishikawa H, Mizutani K, Tamura Y, Kinoshita T. Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg. Med. Chem. 6: 339-347 (1998) https://doi.org/10.1016/S0968-0896(97)10034-7
  37. Haraguchi H, Yoshida N, Ishikawa H, Tamura Y, Mizutani K. Protection of mitochondrial functions against oxidative stresses by isoflavans from Glycyrrhiza glabra. J. Pharm. Pharmacol. 52: 219-223 (2000) https://doi.org/10.1211/0022357001773724
  38. Ahn J, Um M, Choi W, Kim S, Ha T. Protective effects of Glycyrrhiza uralensis Fisch on the cognitive deficits caused by ${\beta}-amyloid$ peptide 25-35 in young mice. Biogerontology 7: 239-247 (2006) https://doi.org/10.1007/s10522-006-9023-0
  39. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC. Caspase-3: Avulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinsons disease. P. Natl. Acad. Sci. USA 97: 2875-2880 (2000) https://doi.org/10.1073/pnas.040556597
  40. Del Rio M, Velez-Pardo C. Monoamine neurotoxins induced apoptosis in lymphocytes by a common oxidative stress mechanism: Involvement of hydrogen peroxide, caspase-3, and nuclear factor kappa-B, p 53, c-Jun transcription factors. Biochem. Pharmacol. 63: 677-688 (2002) https://doi.org/10.1016/S0006-2952(01)00907-8
  41. Gruss-Fischer T, Fabian I. Protection by ascorbic acid from denaturation and release of cytochrome c, alteration of mitochondrial membrane potential, and activation of multiple caspases induced by $H_2O_2$, in human leukemia cells. Biochem. Pharmacol. 63:1325-1335 (2002) https://doi.org/10.1016/S0006-2952(02)00863-8