Quantitative Structure-Activity Relationship (QSAR) of Antioxidative Anthocyanidins and Their Glycosides

  • Published : 2008.06.30

Abstract

The quantitative structure-activity relationships (QSAR) study of antioxidative anthocyanidins and their glycosides were evaluated using 4 different assays of Trolox equivalent antioxidant capacity (TEAC), superoxide radical ($O_2^{{\cdot}-}$), hydrogen peroxide ($H_2O_2$), and peroxynitrite radical ($ONOO^-$) scavenging with TSAR software. Four models were developed with significant predictive values ($r^2$ and p value), which indicated that the antioxidant activities were mainly governed by the 3-dimensional structural energy (torsional energy), constitutional properties (the number of hydroxyl and methyl groups), and electrostatic properties (heat of formation, and dipole, quadrupole, and octupole components). This QSAR approach could contribute to a better understanding of structural properties of anthocyanidins and their glycosides that are responsible for their antioxidant activities. It might also be useful in predicting the antioxidant activities of other anthocyanins.

Keywords

References

  1. Eder R. Pigments. pp. 845-880. In: Pigments in Food Analysis by HPLC. Nollet MLL (ed). Dekker, New York, NY, USA (2000)
  2. Hansen AS, Marckmann P, Dragsted LO, Finne Nielsen IL, Nielsen SE, Gronbaek M. Effect of red wine and red grape extract on blood lipids, haemostatic factors, and other risk factors for cardiovascular disease. Eur. J. Clin. Nutr. 59: 449-455 (2005) https://doi.org/10.1038/sj.ejcn.1602107
  3. Nakaishi H, Matsumoto H. Effects of black currant anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. Altern. Med. Rev. 5: 553- 562 (2000)
  4. Pedreschi R, Cisneros-Zevallos L. Antimutagenic and antioxidant properties of phenolic fractions from Andean purple corn (Zea mays L.). J. Agr. Food Chem. 54: 4557-4567 (2006) https://doi.org/10.1021/jf0531050
  5. Wang H, Nair MG, Strasburg GM, Chang YC, Booren AM, Gray JI, Dewitt DL. Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J. Nat. Prod. 62: 294-296 (1999) https://doi.org/10.1021/np980501m
  6. Kahkonen MP, Heinonen M. Antioxidant activity of anthocyanins and their aglycons. J. Agr. Food Chem. 51: 628-633 (2003) https://doi.org/10.1021/jf025551i
  7. Magistretti MJ, Conti M, Cristoni A. Antiulcer activity of an anthocyanidin from Vaccinium myrtillus. Arzneimittelforschung 38: 686-690 (1988)
  8. Bomser J, Madhavi DL, Singletary, K, Smith MA. In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Med. 62: 212-216 (1996) https://doi.org/10.1055/s-2006-957862
  9. Bell DR, Gochenaur K. Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J. Appl. Physiol. 100: 1164- 1170 (2006) https://doi.org/10.1152/japplphysiol.00626.2005
  10. Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, Bickford PC. Reversals of age-related declines in neuronal signal transduction, cognitive and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J. Neurosci. 19: 8114-8121 (1999) https://doi.org/10.1523/JNEUROSCI.19-18-08114.1999
  11. Oh J-K, Kim SJ, Imm J-Y. Antioxidative effect of crude anthocyanins in water-in-oil microemulsion system. Food Sci. Biotechnol. 15: 283-288 (2006)
  12. Hou D-X. Potential mechanisms of cancer chemoprevention by anthocyanins. Curr. Mol. Med. 3: 149-159 (2003) https://doi.org/10.2174/1566524033361555
  13. Borkowski T, Szymusiak H, Gliszczynska-Swiglo A, Rietjens IMCM, Tyrakowska B. Radical scavenging capacity of wine anthocyanins is strongly pH-dependent. J. Agr. Food Chem. 53: 5526-5534 (2005) https://doi.org/10.1021/jf0478556
  14. Wang SY, Jiao H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J. Agr. Food Chem. 48: 5677-5684 (2000) https://doi.org/10.1021/jf000766i
  15. Vajragupta O, Boonchoong P, Wongkrajang Y. Comparative quantitative structure-activity study of radical scavengers. Bioorg. Med. Chem. 8: 2617-2628 (2000) https://doi.org/10.1016/S0968-0896(00)00195-4
  16. Konczak-Islam I, Yoshimoto M, Hou D-X, Terahara N, Yamakawa O. Potential chemopreventive properties of anthocyanin-rich aqueous extracts from in vitro produced tissue of sweetpotato (Ipomoea batatas L.). J. Agr. Food Chem. 51: 5916-5922 (2003) https://doi.org/10.1021/jf030066o
  17. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  18. Hermens J. Prediction of environmental toxicity based on structureactivity relationships using mechanistic information. Sci. Total Environ. 171: 235-242 (1995) https://doi.org/10.1016/0048-9697(95)04684-5
  19. Chun HS, Chang H-J, Choi EH, Kim HJ, Ku KH. Molecular and absorption properties of 12 soy isoflavones and their structureactivity relationship with selected biological activities. Biotechnol. Lett. 27: 1105-1111 (2005) https://doi.org/10.1007/s10529-005-8457-9
  20. Chang H-J, Kim HJ, Chun HS. Quantitative structure-activity relationship (QSAR) for neuroprotective activity of terpenoids. Life Sci. 80: 835-841 (2007) https://doi.org/10.1016/j.lfs.2006.11.009
  21. Wee J-H, Moon J-H, Eun J-B, Chung JH, Kim YG, Park K-H. Isolation and identification of antioxidants from peanut shells and the relationship between structure and antioxidant activity. Food Sci. Biotechnol. 16: 116-122 (2007)
  22. Lien EJ, Ren S, Bui H-H, Wang R. Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radical Bio. Med. 26: 285-294 (1999) https://doi.org/10.1016/S0891-5849(98)00190-7
  23. Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers AEMF, Rietjens IMCM. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radical Bio. Med. 31: 869-881 (2001) https://doi.org/10.1016/S0891-5849(01)00638-4
  24. Kim D-O, Lee CY. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. 44: 253-273 (2004) https://doi.org/10.1080/10408690490464960
  25. Rahman MM, Ichiyanagi T, Komiyama T, Hatano Y, Konashi T. Superoxide radical- and peroxynitrite-scavenging activity of anthocyanins; structure-activity relationship, and their synergism. Free Radical Res. 40: 993-1002 (2006) https://doi.org/10.1080/10715760600815322
  26. Meiers S, Kemeny M, Weyand U, Gastpar R, von Angerer E, Marko D. The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J. Agr. Food Chem. 49: 958-962 (2001) https://doi.org/10.1021/jf0009100
  27. Miyazawa T, Nakagawa K, Kudo M, Muraishi K, Someya K. Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside, and cyanidin-3,5-diglucoside, into rats and humans. J. Agr. Food Chem. 47: 1083-1091 (1999) https://doi.org/10.1021/jf9809582
  28. Mazza G, Kay CD, Cottrell T, Holub BJ. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J. Agr. Food Chem. 50: 7731-7737 (2002) https://doi.org/10.1021/jf020690l
  29. Choi EH, Ok HE, Yoon Y, Magnuson BA, Kim MK, Chun HS. Protective effect of anthocyanin-rich extract from bilberry (Vaccinium myrtillus L.) against myelotoxicity induced by 5- fluorouracil. Biofactors 29: 55-65 (2007) https://doi.org/10.1002/biof.5520290106
  30. Choi EH, Chang H-J, Cho JY, Chun HS. Cytoprotective effect of anthocyanins against doxorubicin-induced toxicity in H9c2 cardiomyocytes in relation to their antioxidant activities. Food Chem. Toxicol. 45: 1873-1881 (2007) https://doi.org/10.1016/j.fct.2007.04.003
  31. Kovatcheva A, Buchbauer G, Golbraikh A, Wolschann P. QSAR modeling of $\alpha$-campholenic derivatives with sandalwood odor. J. Chem. Inf. Comp. Sci. 43: 259-266 (2003) https://doi.org/10.1021/ci020296n
  32. Kay CD, Mazza G, Holub BJ, Wang J. Anthocyanin metabolites in human urine and serum. Brit. J. Nutr. 91: 933-942 (2004) https://doi.org/10.1079/BJN20041126
  33. Rezk BM, Haenen GRMM, van der Vijgh WJF, Bast A. The antioxidant activity of phloretin: The disclosure of a new antioxidant pharmacophore in flavonoids. Biochem. Bioph. Res. Co. 295: 9-13 (2002) https://doi.org/10.1016/S0006-291X(02)00618-6
  34. Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agr. Food Chem. 51: 6657-6662 (2003) https://doi.org/10.1021/jf034790i
  35. Wang H, Cao G, Prior RL. Oxygen radical absorbing capacity of anthocyanins. J. Agr. Food Chem. 45: 304-309 (1997) https://doi.org/10.1021/jf960421t
  36. Pannala AS, Chan TS, O'Brien PJ, Rice-Evans CA. Flavonoid Bring chemistry and antioxidant activity: Fast reaction kinetics. Biochem. Bioph. Res. Co. 282: 1161-1168 (2001) https://doi.org/10.1006/bbrc.2001.4705
  37. Thakur A, Vishwakarma S, Thakur M. QSAR study of flavonoid derivatives as p56lck tyrosinkinase inhibitors. Bioorg. Med. Chem. 12: 1209-1214 (2004) https://doi.org/10.1016/j.bmc.2003.11.024
  38. Verma RP, Hansch C. A comparison between two polarizability parameters in chemical-biological interactions. Bioorg. Med. Chem. 13: 2355-2372 (2005) https://doi.org/10.1016/j.bmc.2005.01.051
  39. Mhin BJ, Lee JE, Choi W. Understanding the congener-specific toxicity in polychlorinated dibenzo-p-dioxin: Chlorination pattern and molecular quadrupole moment. J. Am. Chem. Soc. 124: 144- 148 (2002) https://doi.org/10.1021/ja016913q