DOI QR코드

DOI QR Code

An Environmentally-friendly Precursor, Ferrous Acetate, in preparation for Monodisperse Iron Oxide Nanoparticles

  • Suh, Yong-Jae (Nano-Materials Group, Korea Institute of Geoscience & Mineral Resources) ;
  • Kil, Dae-Sup (Nano-Materials Group, Korea Institute of Geoscience & Mineral Resources) ;
  • Chung, Kang-Sup (Nano-Materials Group, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee, Hyo-Sook (Nano-Materials Group, Korea Institute of Geoscience & Mineral Resources) ;
  • Shao, Huiping (School of Materials Science and Engineering, University of Science and Technology Beijing)
  • Published : 2008.09.30

Abstract

Almost monodisperse iron oxide nanoparticles with an average particle size ranging from 5 to 43 nm were fabricated using an environmentally friendly starting material, ferrous acetate. The smallest particles were formed in the presence of a reductant, 1,2-dodecanediol, while the particle size increased with increasing concentration of dispersing agents. The dispersants consisted of various combinations of oleic acid, oleylamine, trioctylphosphine, and polyvinylpyrrolidone. The threshold temperature to form crystalline particles was found to be $240^{\circ}C$. The 43 nm nanoparticles exhibited a room temperature saturation magnetization and coercivity of 57 emu/g and 47 Oe, respectively.

Keywords

References

  1. A. Bee, R. Massart, and S. Neveu, J. Magn. Magn. Mater. 149, 6 (1995) https://doi.org/10.1016/0304-8853(95)00317-7
  2. Y. Sui, D. P. Xu, F. L. Zheng, and W. H. Su, J. Appl. Phys. 80, 719 (1996) https://doi.org/10.1063/1.362879
  3. H. F. Yu and A. M. Gadalb, J. Mater. Res. 11, 663 (1996) https://doi.org/10.1557/JMR.1996.0080
  4. N. Moumen, P. Veillet, and M. P. Pileni, J. Magn. Magn. Mater. 149, 67 (1995) https://doi.org/10.1016/0304-8853(95)00340-1
  5. N. S. Kommareddi, M. Tata, V. T. John, G. L. McPherson, M. F. Herman, Y. S. Lee, C. J. O'Connor, J. A. Akkara, and D. L. Kaplan, Chem. Mater. 8, 801 (1996) https://doi.org/10.1021/cm940485o
  6. K. S. Suslick, M. Fang, and T. Hyeon, J. Am. Chem. Soc. 118, 11960 (1996) https://doi.org/10.1021/ja961807n
  7. H. C. Shin, J. H. Oh, J. C. Lee, and S. C. Choi, Phys. Status Solidi (A) Appl. Res. 189, 735 (2002) https://doi.org/10.1002/1521-396X(200202)189:3<735::AID-PSSA735>3.0.CO;2-7
  8. E. H. Kim, H. S. Lee, and H. Shao, Key. Eng. Mater. 277-279, 1044 (2005) https://doi.org/10.4028/www.scientific.net/KEM.277-279.1044
  9. X. Q. Zhao, F. Zheng, Y. Liang, Z. Q. Hu, Y. B. Xu, and G. B. Zhang, Mater. Lett. 23, 305 (1995) https://doi.org/10.1016/0167-577X(95)00031-3
  10. M. Sivakumar, A. Gedanken, W. Zhong, Y. W. Du, D. Bhattacharya, Y. Yeshurun, and I. Felner, J. Magn. Magn. Mater. 268, 95 (2004) https://doi.org/10.1016/S0304-8853(03)00479-7
  11. H. Shao, H. Lee, Y. Huang, I. Ko, and C. Kim, IEEE T Magn. 41, 3388 (2005) https://doi.org/10.1109/TMAG.2005.855206
  12. R. Vijayakumar, Y. Koltypin, I. Felner, and A. Gedanken, Mat. Sci. Eng. A-Struct. 286, 101 (2000) https://doi.org/10.1016/S0921-5093(00)00647-X
  13. C. B. Murray, S. Sun, H. Doyle, and T. Betley, MRS Bull. 26, 985 (2001) https://doi.org/10.1557/mrs2001.254
  14. B. D. Cullity, Introduction to Magnetic Materials Addison-Wesley, London (1972) p. 387
  15. J. Park, K. An, Y. Hwang, J. E. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, and T. Hyeon, Nat. Mater. 3, 891 (2004) https://doi.org/10.1038/nmat1251
  16. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, 2nd ed. WILEY-VCH, Weinheim (2003) p. 129
  17. E. V. Shevchenko, D. V. Talapin, H. Schnablegger, A. Kornowski, O. Festin, P. Svedlindh, M. Haase, and H. Weller, J. Am. Chem. Soc. 125, 9090 (2003) https://doi.org/10.1021/ja029937l

Cited by

  1. Effect of Pressure on the Magnetic Properties of Magnetite Nanoparticles Synthesized Using a High Pressure Homogenizer vol.26, pp.6, 2016, https://doi.org/10.4283/JKMS.2016.26.6.190