DOI QR코드

DOI QR Code

Electromyographic Analysis of a Uphill Propulsion of a Bicycle by Forward.Backward Pedaling

정.역구동 페달링에 따른 자전거 등판 시의 근전도 분석

  • Published : 2008.12.30

Abstract

This work intends to investigate the effects of pedaling directions on the muscle actions during the bicycle's uphill propulsion. A test rig was developed that consists of a bicyle with a special planetary geartrain, a height-adjustable treadmill, a rear-wheel support and a magnetic brake. A three-dimensional motion analysis was performed for measuring kinematic characteristics of the forward backward pedaling and the electromygraphy(EMG) measurements were simultaneously performed for estimating the muscle actions of the leg. In this work, four muscles are considered including Gastrocnemius muscle(GM), Vastus lateralis(VL), Tibialis anterior(TA) and Soleus(SOL) while the uphill slope is varied from $0^{\circ}$ to $6^{\circ}$. Raw EMG signals were first processed through the root-mean-square(RMS) averaging and then ensemble curves were derived by averaging the EMG RMS envelopes over 50 consecutive cycles. Results show that both the kinemactic characteristics and the muscle actions are significantly affected by the pedaling direction. The crank speed of the forward pedaling is higher but the difference in speed is reduced as the slope is increased. The ensemble curves of the :ac signals clearly exhibit some differences in their patterns, peak values and the corresponding locations with respect to the crank angle. The peak values of most EMG signals are higher for the forward pedaling regardless of the slope magnitude. However, the averages of the EMG signals are not observed to have a similar relationship with the pedaling direction, which seems to be affected by several factors such as less experience of the participants' backward pedaling. inappropriate bicycle design for the backward pedaling. These limitations will be further considered in future work.

본 논문에서는 자전거의 언덕 등판 시 페달릴 방향이 근육의 활성도에 미치는 영향을 분석하였다. 이를 위하여 정역구동이 가능한 특수유성기어와 언덕 경사각에 따른 마찰력을 후륜에 인가할 수 있는 자기제동장치가 장착된 자전거로 실험 장치를 구성하고 3차원 동작분석과 근전도 분석을 수행하였다. 근활성도는 장단지근, 대퇴사두근, 전경골근, 비장근에 대해서 측정하였으며 언덕 경사는 $0^{\circ}$에서 $6^{\circ}$까지 변화시켰다. 근전도 신호는 우선 평균제곱법을 적용하여 25 ms마다 평균값을 구하고 50개의 연속된 주기에 대한 ensemble 곡선을 구하여 분석하였다. 그 결과로부터 페달링 방향의 변화는 자전거 주행 속도 및 인체하지 근육의 활성도에 큰 영향을 미치는 것을 확인하였다. 구체적으로는 크랭크 각도에 따른 근활성도의 패턴 및 최대값의 분포에 있어 정방향 구동과 역방향 구동은 큰 차이를 보이는데 근활성도의 최대값은 정구동으로 페달링할 때가 역 구동으로 페달링할 때보다 큰 반면 근활성도의 평균값은 장단지근과 대퇴사두근에서는 정구등 페달링이 더 높게 나타나고 전경골근과 비장근에서는 역구동 페달링이 더 높게 나타나며 주행 등판각이 증가하면 페달링 방향이 바뀜에 따른 근활성도 최대값의 차이는 더욱 커진다.

Keywords

References

  1. 유문수(2006). 자전거의 속도변환장치, 특허 제10-0436697.
  2. Bertucci, W., Grappe, F., Girard, A., Betik A. & Rouillon, J. (2005). Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. Journal of Biomechanics, 38, 1003-1010. https://doi.org/10.1016/j.jbiomech.2004.05.037
  3. Bressel, E. (2001). The influence of ergometer pedaling direction on peak patellofemoral joint forces. Clinical Biomechanics, 16, 431-437. https://doi.org/10.1016/S0268-0033(01)00009-2
  4. Chen, G., Kautz, S., & Zajaca, F. (2001). Simulation analysis of muscle activity changes with altered body orientations during pedaling. Journal of Biomechanics, 34, 749-756. https://doi.org/10.1016/S0021-9290(01)00014-8
  5. Darel, S., Couturier, A., & Hug, F. (2007). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology, 17, 866-878.
  6. Duc, S., Bertucci, W., Pemin, J., & Grappe, F. (2008). Muscular activity during uphill cycling: Effect of slope, posture, hand grip position and constrained bicycle lateral sways. Journal of Electromyography and Kinesiology, 18, 116-127. https://doi.org/10.1016/j.jelekin.2006.09.007
  7. Hug, F., Faucher, M., Marqueste, T., Guillot, C., Kipson, N., & Jarres, Y. (2004). Electromyographic signs of neuromuscular fatigue are concomitant with further increase in ventilation during static handgrip. Clinical Physiology and Functional Image, 24, 25-32. https://doi.org/10.1046/j.1475-0961.2003.00525.x
  8. Neptune, R., & Bogert, A. (1998). Standard mechanical energy analyses do not correlate with muscle work in cycling. Journal of Biomechanics, 31, 239-245. https://doi.org/10.1016/S0021-9290(97)00129-2
  9. Neptune, R., & Kautz, S. (2000). Knee joint loading in forward versus backward pedaling: implications for rehabilitation strategies. Clinical Biomechanics, 15, 528-535. https://doi.org/10.1016/S0268-0033(00)00005-X
  10. Neptune, R., Kautz, S., & Zajac, F. (2000). Muscle contributions to specific biomechanical functions do not change in forward versus backward pedaling. Journal of Biomechanics, 33, 155-164. https://doi.org/10.1016/S0021-9290(99)00150-5
  11. Rouffet, D., & Hautier, C. (2008). EMG normalization to study muscle activation in cycling. Journal of Electromyography and Kinesiology, 18, 866-878. https://doi.org/10.1016/j.jelekin.2007.03.008

Cited by

  1. Comparison of Biomechanical Characteristics for the Skill Level in Cycle Pedaling vol.26, pp.1, 2016, https://doi.org/10.5103/KJSB.2016.26.1.11
  2. The Effect of Backward Pedaling Ergometer Training on Ankle ROM, Lower Extremities Strength, Foot Pressure in Hemiplegia vol.8, pp.3, 2013, https://doi.org/10.13066/kspm.2013.8.3.467