Adsorption of Arsenic onto Two-Line Ferrihydrite

비소의 Two-Line Ferrihydrite에 대한 흡착반응

  • Jung, Young-Il (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Woo-Chun (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen-Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yun, Seong-Taek (Department of Earth and Environmental Sciences, Korea University) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 정영일 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 이우춘 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 윤성택 (고려대학교 이과대학 지구환경과학과) ;
  • 김순오 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소)
  • Published : 2008.09.30

Abstract

Arsenic has recently become of the most serious environmental concerns, and the worldwide regulation of arsenic fur drinking water has been reinforced. Arsenic contaminated groundwater and soil have been frequently revealed as well, and arsenic contamination and its treatment and measures have been domestically raised as one of the most important environmental issues. Arsenic behavior in geo-environment is principally affected by oxides and clay minerals, and particularly iron (oxy)hydroxides have been well known to be most effective in controlling arsenic. Among a number of iron (oxy)hydroxides, for this reason, 2-line ferrihydrite was selected in this study to investigate its effect on arsenic behavior. Adsorption of 2-line ferrihydrite was characterized and compared between As(III) and As(V) which are known to be the most ubiquitous species among arsenic forms in natural environment. Two-line ferrihydrite synthesized in the lab as the adsorbent of arsenic had $10\sim200$ nm for diameter, $247m^{2}/g$ for specific surface area, and 8.2 for pH of zero charge, and those representative properties of 2-line ferrihydrite appeared to be greatly suitable to be used as adsorbent of arsenic. The experimental results on equilibrium adsorption indicate that As(III) showed much stronger adsorption affinity onto 2-line ferrihydrite than As(V). In addition, the maximum adsorptions of As(III) and As(V) were observed at pH 7.0 and 2.0, respectively. In particular, the adsorption of As(III) did not show any difference between pH conditions, except for pH 12.2. On the contrary, the As(V) adsorption was remarkably decreased with increase in pH. The results obtained from the detailed experiments investigating pH effect on arsenic adsorption show that As(III) adsorption increased up to pH 8.0 and dramatically decreased above pH 9.2. In case of As(V), its adsorption steadily decreased with increase in pH. The reason the adsorption characteristics became totally different depending on arsenic species is attributed to the fact that chemical speciation of arsenic and surface charge of 2-line ferrihydrite are significantly affected by pH, and it is speculated that those composite phenomena cause the difference in adsorption between As(III) and As(V). From the view point of adsorption kinetics, adsorption of arsenic species onto 2-line ferrihydrite was investigated to be mostly completed within the duration of 2 hours. Among the kinetic models proposed so for, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto 2-line ferrihydrite.

최근 들어 비소오염에 대한 환경적 관심이 증대되면서, 세계적으로 비소에 대한 음용수 기준이 강화되고 있으며, 국내적으로도 비소로 오열된 지하수 덴 토양의 출현 빈도가 높아지면서 비소 오염과 그에 대한 처리 및 대책이 주요한 환경적 관심사로 대두되고 있다. 지중에서 비소의 거동은 주로 산화물들과 점토광물에 의하여 제어되는데, 특히 철(산)수산화물이 가장 효과적으로 비소를 제어하는 것으로 알려져 있다. 이에 본 연구에서는 다양한 철(산)수산화물들 중 2-line ferrihydrite가 비소의 거동에 어떠한 영향을 미치는가를 파악하기 위하여 수행되어졌다. 다양한 비소 화학종들 중 자연 상에서 발현 빈도수가 가장 큰 3가 비소(아비산염)와 5가 비소(비산염)가 2-line ferrihydritc와 어떠한 흡착 특성을 갖는지 비교하여 연구하였다. 비소의 흡착제로 실험실에서 제조되어 이용된 2-line ferrihydrite는 $10\sim200nm$의 작은 나노 크기, $247m^{2}/g$의 비교적 큰 비표면적, 다른 철(산)수산화물보다 높은 8.2의 영전하 pH 등을 갖는 것으로 나타났는데, 이러한 2-line ferrihydrite의 대표적인 물리화학적인 특성들은 비소의 흡착제로서 매우 적합한 것으로 조사되었다. 평형흡착 실험결과, 3가 비소가 5가 비소보다 월등히 높은 흡착력을 보였으며, 3가 비소는 pH 7.0, 5가 비소는 pH 2.0에서 가장 놀은 흡착력을 보이는 것으로 나타났다. 3가 비소는 pH 12.2를 제외하고는 pH에 따른 흡착량이 크게 차이를 보이지 않은 반면, 5가 비소는 pH가 증가함에 따라 흡착량이 현격하게 갈소하는 것으로 나타났다. pH에 따른 비소의 흡착특성을 보다 더 자세하게 초찰한 견과, 3가 비소는 pH 8.0까지는 흡착량이 증가하다가 pH 9.2 이상에서는 흡착량이 급격하게 같소하는 것으포 나타났다. 5가 비소의 경우에는 pH가 증가할 수록 비교적 일정하게 흡착량이 갉소하는 것을 알 수 있었다. 이렇게 비소 화학종에 따라서 상이한 흡착특성을 보이는 이유는 pH에 따른 각 비소 화학종의 화학져 존재 형태(chemical speciation)와 2-line ferrihydrite의 표면전하의 변화 등이 복합적으로 작용하기 때문인 것으로 사료된다. 각 비소 화학종과 2-line ferrihyite와의 흡착특성을 반응속도론적 관점에서 고찰한 결과, 대부분의 비소종들이 2시간 이내에 흡착이 거의 완료되는 것으로 나타났으며, 두 종류의 비소 화학종과 2-line ferrihydrite의 흡착 반응속도를 가장 잘 모사하는 반응속도 모댁은 power function과 elovich model인 것으로 조사되었다.

Keywords

References

  1. 고경석, 오인숙, 김재곤, 안주성, 김형수, 석희준 (2006) 황산염처리 산화철피복모래의 비소 흡착능 평가 연 구. 2006년 자원환경지질학회 춘계 학술발표회 (초 록), 제주도 4월 19일, 445-448p
  2. 고일원, 이상우, 김주용, 김경웅, 이철효 (2004) 나노크기 적철석 입자 피복 모래를 이용한 비소 3가와 비소 5가의 제거. 지하수토양환경, 9, 63-69
  3. 고일원 김주용, 김경웅, 안주성 (2005) 비소의 적철석 표면 흡착에 토양 유기물이 미치는 영향: 화학종 모 델링과 흡착 기작. 자원환경지질, 38, 23-31
  4. 김순오, 정영일, 조현구, 최선희, 이현휘 (2007) 비소와 영가철 및 철(수)산화물과의 표면반응에 대한 X선 흡수분광 예비연구. 2007년 한국광물학회.한국암 석학회 공동학술발표회(초록), 안동대학교 5월 31 일, 131-134p
  5. 안주성, 김주용, 전철민, 문희수 (2003) 풍화 광미 내 고상 비소의 광물학적⋅화학적 특성 및 용출 가능 성 평가. 자원환경지질, 36, 27-38
  6. 안주성, 고경석, 이진수, 김주용 (2005) 자연적 지하수 비소오염의 국내외 산출특성. 자원환경지질, 38, 547 -561
  7. 양재의, 박동식, 한재성 (1995) 포장조건에서 Kinetic models로부터 산출한 Benfuresate 및 Oxolinic Acids 의 토양 중 반감기 비교 평가. 한국환경농학회지, 14, 302-311
  8. 이상은, Heins Ulitz Neue, 박준규, 임수길 (1994) Ultisol 과 Alfisol 및 inceptisol 토양에서 토양표면전하 측정 에 사용된 이온흡착법, 전위차 적정법 및 역정정법의 비교. 1994년 한국토양비료학회, 26, 160-171
  9. 정영일, 김인선, 김순오 (2006) 영가철을 이용한 광미 용출액으로부터 비소 제거에 관한 연구. 2006년 대 한지질학회 추계학술회(초록), 한국지질자원연구원 10월 26일, 149p
  10. 정영일, 김순오, 김인선, 조현구 (2007) Long-term evaluation of the feasibility of zerovalent iron for the removal of arsenic and heavy metals from tailing- leachate. 2007년 춘계 지질과학기술 공동학술대 회(초록), 경주 4월 25일, 382-384p
  11. 환경부 (2007) 2006년도 토양 측정망 및 실태조사 결과
  12. Bai, B., Hankins, N.P., Hey, M.J., and Kingman, S.W. (2004) In situ mechanistic study of SDS adsorption on hematite for optimized froth flotation. Industrial Engineering and Chemistry Research, 43, 5326- 5338 https://doi.org/10.1021/ie034307t
  13. Carrasco, N., Kretzchmar, R., Pesch, M.-L., and Kraemer, S.M. (2007) Low concentrations of surfactants enhanced siderophore-promoted dissolution of goethite. Environmental Science and Technology, 37, 3633-3638
  14. Dixit, S. and Hering, J.G. (2003). Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science and Technology, 37, 4182-4189 https://doi.org/10.1021/es030309t
  15. Du, Q., Sun, Z., Forsling, W., and Tang, H. (1997) Acid-base properties of aqueous illite surfaces. Journal of Colloid and Interface Science, 187, 221-231 https://doi.org/10.1006/jcis.1996.4631
  16. Fuller, C.C., Davis, J.A., and Waychunas, G.A. (1993) Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochimica et Cosmochimica Acta, 57, 2271-2282 https://doi.org/10.1016/0016-7037(93)90568-H
  17. Inskeep, W.P., McDermott, T.R., and Fendorf, S. (2002) Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes. In: Frankenberger, W.T.,Jr. (ed.), Environmental Chemistry of Arsenic, Marcel Dekker, New York, 183 -215
  18. Jain, A., Raven, K.P., and Loeppert, R.H. (1999) Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH- release stoichiometry. Environmental Science and Technology, 33, 1179-1184 https://doi.org/10.1021/es980722e
  19. Jonsson, C.M., Persson, P., Sjöberg, S., and Loring, J.S. (2008) Adsorption of glyphosate on goethite ($\alpha$-FeOOH): Surface complexation modeling combining spectroscopic and adsorption data. Environmental Science and Technology, 42, 2464-2469 https://doi.org/10.1021/es070966b
  20. Jung, Y.I., Cho, H.G., Kim, I.S., and Kim, S.O. (2007) Application of zerovalent iron for the removal of arsenic from leachate of tailing. The 60th anniversary of geological society of Korea (Abstracts for the international symposium on global environmental change), Seoul April 12-13, 52p
  21. Kim, S.O., Jung, Y.I., Cho, H.G. Park., W.J., and Kim, I.S. (2007) Removal of arsenic from leachate of tailing using laboratory-synthesized zerovalent iron. Journal of Applied and Biological Chemistry, 50, 6-12
  22. Kraepiel, A.M., Keller, K., and Morel F.M.M. (1998) On the acid-base chemistry of permanently charged minerals. Environmental Science and Technology, 32, 2829-2838 https://doi.org/10.1021/es9802899
  23. Lowry, G.V. and Johnson, K.M. (2004) Congener- specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science and Technology, 38, 5208- 5216 https://doi.org/10.1021/es049835q
  24. Masue, Y., Loeppert, R.H., and Kramer, T.A. (2007) Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum:iron hydroxides. Environmental Science and Technology, 41, 837-842 https://doi.org/10.1021/es061160z
  25. Mok, W.M. and Wai, C.M. (1994) Mobilization of arsenic in contaminated river waters. In: Nriagu, J.O. (ed.), Arsenic in the Environment, Wiley, New York, 99-117
  26. Newman, D.K., Ahmann, D., and Morel, F.M.M. (1998) A brief review of microbial arsenate respiration. Geomicrobiology Journal, 15, 255-268 https://doi.org/10.1080/01490459809378082
  27. Nielsen, U.G., Paik, Y., Julmis, K., Schoonen, M.A. A., Reeder, R.J., and Grey, C.P. (2005) Investigating sorpton on iron-oxyhydroxide soil minerals by solid -state NMR spectroscopy: A 6Li MAS NMR study of adsorpton and absorption on goethite. Journal of Physical Chemistry B., 109, 18310-18315 https://doi.org/10.1021/jp051433x
  28. Nriagu, J.O. (2002) Arsenic poisoning through the ages. In: Frankenberger, Jr. W.T. (ed.), Environmental chemistry of arsenic, Marcel Dekker, Inc., New York, 1-26
  29. Hesleitner, P., Babic, D., Kallay, N., and Matijevic, E. (1987) Adsorption at solid/solution interfaces, 3. Surface charge and potential of colloidal hematite. Langmuir, 3, 815-820 https://doi.org/10.1021/la00077a041
  30. Raven, K.P., Jain, A., and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environmental Science and Technology, 32, 344-349 https://doi.org/10.1021/es970421p
  31. Rietra, R.P.J.J., Hiemstra, T., and van Riemsdijk, W.H. (2001) Interaction between calcium and phosphate adsorption on goethite. Environmental Science and Technology, 35, 3369-3374 https://doi.org/10.1021/es000210b
  32. Schwertmann U. and Cornell R.M. (2000) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH Publishers, New York, USA. 103-112
  33. Singh, U. and Uehara, G. (1998) Electrochemistry of the double layer: Principles and applications to soils. In: Sparks, D.L. (ed.), Soil physical chemistry, CRC Press, Boca Raton, Florida, USA, 1-56
  34. Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517 -568 https://doi.org/10.1016/S0883-2927(02)00018-5
  35. Sohrin, Y., Matsui, M., Kawashima, M., Hojo, M., and Hasegawa H. (1997) Arsenic biogeochemistry affected by eutrophication in Lake Biwa, Japan. Environmental Science and Technology, 31, 2712-2720 https://doi.org/10.1021/es960846w
  36. Sparks, D.L. (1986) Soil physical chemistry. CRC Press, Boca Raton, Florida, USA
  37. Stumm, W. (1992) Chemistry of the solid-water interface. John Wiley & Sons, New York, USA
  38. USEPA (2006) Integrated Risk Information System, CASRN 7440-38-2
  39. Wilkie, J.A. and Hering, J.G. (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/ adsorbent ratios and co-occurring solutes. Colloid Surface A, 107, 97-110 https://doi.org/10.1016/0927-7757(95)03368-8
  40. Williams, J.W. and Silver, S. (1984) Bacterial resistance and detoxification of heavy metals. Enzyme and Microbial Technology, 6, 530-537 https://doi.org/10.1016/0141-0229(84)90081-4